ARCHITECTURE AND ENVIRONMENT

The Geometry of Environment:
An Introduction to Spatial
Organization in Design :

by Lionel March and Philip Steadman
Foreword by Sir Leslie Martin

This brilliant fusion of art and mathe-
matics introduces some stimulating
ideas from modern geometry with
illustrations taken from architecture and
design. The revolution in the teaching
of mathematics and the advent of the
computer in design challenge traditional
ways of apprehending the space
around us and expand the “structural”
understanding of our surroundings.
This book, by presenting in a tangible
way such concepts as transformations,
symmetry groups, sets, and graphs,
aims to help the practising architect to
see the relevance of the “new maths”
to his concerns and at the same time
encourage mathematics students to
explore the widening intellectual
horizons of environmental design and
architecture.

The authors write that “In the past,
geometry and architecture have been
seen to have much in common: Indeed,
it seems evident that recurring
practical problems encountered by
early vuilders such as those of Egypt
and Greece led to geometrical
discoveries. Today, however, there is
not just one kind of geometry but
many . . . Perhaps the chief difference
between the traditional treatment of
geometry in architecture and the one
presented here, is that, previously,
geometry was employed to measure
properties of space such as area,
volume, angle, whereas the new
mathematical theories of sets, groups,
and graphs—to name but a few—
enable us to describe structural
relationships which cannot be expressed
in metrical forms, for example,
‘adjacent to’, “in the neighborhood of’,
‘contained by’.”

In particular, the following mathe-
matical topics are introduced to readers
who have had no contact with them
before: mappings and transformations;
translations, rotations, and reflections;
symmetry groups in the plane; matrices
and vectors; point sets and modular
spaces; stacking, nesting, and fitting;
irregular polygons and convexity;
modules and numbers; proportions and
series; planar graphs and relations;
electrical networks and mosaics of
rectangles; locations and associations;
spatial allocation procedures; and
networks, distances, and routes.

The authors, both of whom studied
mathematics and architecture at
Cambridge University, are members of
the architectural/planning profession
in England.
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Foreword

by Sir Leslie Martin, Professor of Architecture, University of Cambridge

This is a book about the new mathematics and architecture. One of its
stated objectives is to suggest to the younger reader with a mathematical
background that architecture can be an interesting and possibly an
absorbing subject. The point is that if mathematics is thought of as a
‘logical pattern of entities and relationships’ then these may perhaps be
seen to be reflected in the physical and spatial arrangement of buildings.
Indeed precisely this same phrase ‘a logical pattern of entities and
relationships’ built around activities might well be used as a generalized
definition of architecture. And if we think of the subject in this way

then there is no doubt about the value of this book.

But it goes beyond that. To recognize and to admit this relationship is to
deepen and stimulate a whole area of thought about architecture. We
become aware of another way of looking at a design problem through
which we can consider more effectively and rigorously the ranges of
choice that are open to us. The study which may start with a building

is found to be one which extends right through the whole environmental
field.

This is indeed an area of theoretical study to which this book makes a
fundamental contribution. It provides a base from which to build a
more systematic design theory and indicates a direction which this
might follow with advantage.

Preface

In the past, geometry and architecture have been seen to have much in
common. Indeed, it seems evident that recurring practical problems
encountered by early builders such as those of Egypt and Greece led to
geometrical discoveries. Today, however, there is not just one kind

of geometry but many, and the architect is unlikely to find many of
them of direct use to him. He will still, like his engineering colleagues,
use descriptive geometry to enable him to draw plans, elevations and
projections of his scheme. It is possible that space-frame and geodesic
dome structures, although limited in their application, will bring some
architects in touch with the geometrical properties of space-filling
polygons and polyhedra which pack together. Other architects may use
a variety of geometrical devices, mostly concerned with congruence and
similarity, to sharpen the sense of aesthetic order in their work. This
book does not attempt to cover these uses of geometry in architecture
although we occasionally refer to them. We believe that they are dealt
with adequately elsewhere.

Our specific concern is to introduce the student of architecture, whatever
his age or experience, to some of the concepts of new mathematics
which seem to us to have potential value in describing and helping us

to understand some of the geometrical relationships which arise when
we organize shape within buildings. We could have expanded the field
of environment to cover urban and regional systems, but a number of
recent books illustrate extremely well, if sometimes implicitly, the
direction such a study of geometry and the geographical environment
might take. Not only would our contribution here have been redundant,
but it would have required us inevitably to discuss probability theory
and geometrical probability in particular. Such a discussion would have
made the book unwieldy and, we suspect, off-putting for the non-
mathematical reader.

Our aim is twofold: one, to help bridge the gap between the new mathe-
matics and the older generation; and two, to suggest to the youthful
reader, perhaps with a science and mathematics background, that
architecture is an exciting subject — it is neither wholly looking at old
churches, nor laboriously calculating stresses in beams and loads in
columns. We would expect that the book would be of value in sixth-
forms as an introduction to modern ideas of architectural form and
spatial organization; in schools of architecture, planning and environ-
mental studies as a course suggesting new mathematical methodologies



in design; and in professional practice as a stimulus to thought and
inquiry. We hope that this introduction will suggest ways in which
modern geometry can contribute to the progress of architectural design,
especially at a time when computer-aids are developing so rapidly.

In attempting to achieve our purpose for the architectural student we
have deliberately avoided a rigorous approach. At the same time we
have tried to convey a feeling for mathematical structure — a logical
pattern of entities and relationships. Deliberately, we have not avoided
mathematical notation, but wherever possible mathematical statements
are accompanied by architectural illustrations. In our own experience
this helps enormously, and as soon as confidence is gained in reading
mathematical notation it is so much more rewarding to follow up
specialist works by mathematicians themselves. On the other hand, for
readers who are not architects we have limited our illustrations, in the
main, to the works of a few well-known international architects. Because
these works represent distinguished contributions to architectural
design, the reader should be able to find out more about them from
books which are readily available in libraries and the larger bookshops.

Perhaps the chief difference between the traditional treatment of
geometry in architecture and the one presented here, is that, previously,
geometry was employed to measure properties of space such as area,
volume, angle, whereas the new mathematical theories of sets, groups
and graphs — to name but a few — enable us to describe structural rela-
tionships which cannot be expressed in metrical forms, for example,
‘adjacent to’, ‘in the neighbourhood of”, ‘contained by’. Claude Lévi-
Strauss has drawn attention to a similar trend in the social sciences
where the growth of structural studies is seen to be ‘the direct outcome
of modern developments in mathematics which have given increasing
importance to the qualitative point of view in contradistinction to the
quantitative point of view of traditional mathematics.” The advent of
computer methods has meant that architectural elements and relation-
ships need to be given mathematical representation of some kind. This
book does not concern itself with computing as such, but it does intro-
duce some of the algebraic and geometrical structures of the new mathe-
matics which appear to be similar to — or isomorphic with — physical and
spatial aspects of buildings.

The first notable application of the new mathematics in architectural
design occurs in Christopher Alexander’s outstanding Notes on the
Synthesis of Form. Since its publication in 1964, Alexander and his
colleagues have made further important contributions to design methods
and to what, perhaps prematurely, became known as relational theory.
To Alexander must go the credit of breaking down the barriers of
prejudice and habit, but of those who followed him past the barriers

not all have had the advantages of his dual training in mathematics and
architecture and, worse, not all have maintained the scrupulous self-
critical attitude of their leader. For example, in the aftermath, there
grew up an extreme point of view which seemed to be claiming that the
objective structural analysis of the functional requirements of a social
organization would, ipso facto, generate the design of the building or
environment to accommodate it. That is to say, if we knew enough
about the elaborate relations existing between pupils, pupils and staff,
members of staff and so on, we could design a school. Alexander him-
self never took this view. In his more recent papers he has stressed the
importance of the geometrical constraints which a particular design
solution impose on a human situation. Nevertheless, it is true that his
work tends to emphasize functional factors rather than formal. This
emphasis is surely right in a field where so much guesswork and un-
tutored intuition have ruled, for lack of a systematic approach. In the
confusion designers find it necessary to grasp at the more easily compre-
hended formal attributes to achieve anything worthwhile at all. Our
hope is that this introduction to the geometry of spatial organization
will complement Alexander’s work to some degree. Certainly we would
recommend Notes on the Synthesis of Form to our readers in its own
right, but particularly to counter our total disregard in this book for any
but the most simple functional requirements of a design programme.
Without doubt, geometry may be used to make fun shapes, but in
architectural design that must never be at the expense of satisfying
people’s psychological, social, cultural or economic desires.

This book is in fourteen chapters. The first discusses the fundamental
idea of mapping. Typically, an architect’s drawing can be said to be a
map of the real building: transformation mappings such as isometry,
similarity, affinity, perspectivity, topology are introduced. The next

two chapters are concerned with symmetry as it is understood in modern
mathematics and, after a historical account of its development in
mineralogy, crystallography, and plant and animal morphology, the
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notions of automorphic groups, of rotations, of reflections, and transla-
tions are discussed. The fourth chapter introduces vectors and matrices
and establishes the mathematical foundations for some of the sub-
sequent topics.

The next three chapters, 5, 6, and 7, centre on problems related to the
description of shape. They describe some of the difficulties encountered
in trying to give mathematical expression to shape. The chapters
progress from a discussion of modular and rectangular forms used to
introduce set-theoretic concepts, to non-modular, rectangular spaces
and, finally, to irregular polygonal shapes. Set theory, vectors and
matrices are employed, together with the concept of convexity which is
basic to linear programming. Number theory and modular coordination
are the themes of Chapter 8, which takes the form of a review of number
combinations and their permutations in the general context of Diophan-
tine equations. Chapter 9 attempts to remove much of the mystique,
traditional among some art historians and architects, from the subject
of proportional systems, and to give some of these systems a set-
theoretic formulation.

The next two chapters, 10 and 11, introduce graph theory. In particular,
they develop the idea of mapping rooms or spaces onto the vertices of a
graph in problems where some rooms are constrained to be next to
others, a relationship which is identified by the presence or absence of an
edge to the graph. The value of the graph lies in the capacity it has for
showing up the essential structure of a set of relationships (edges)
between a number of elements (vertices). An interesting analogy with
Kirchhoff’s laws for electrical flow is used to determine the plan arrange-
ment of a house. Finally, the last three chapters, 12, 13, and 14, take a
critical look at some computer techniques currently under development
for generating building plans and allocating activities, and for evaluating
circulation patterns. These chapters illustrate some uses of classification
trees and matrix representations, and demonstrate the immense com-
binatorial problems some automatic design methods imply. The final
chapters also serve to introduce some of the algorithmic procedures
employed in computing, for example, shortest paths through networks.

We include specific references in each chapter, but more general
reading will be found at the end of the book together with a list of the
mathematical symbols which we use.

We would like to thank the Professional Literature Committee of the
Royal Institute of British Architects for identifying this particular ‘gap’
in the literature, and for inviting us to attempt to fill it. Our colleagues

at the School of Architecture and at the centre for Land Use and Built
Form Studies in Cambridge have all contributed to the work, sometimes
explicitly and on such occasions specific references will be found at the
appropriate point in the text, but more often unwittingly by their good
humour and constant intellectual stimulation. Especially, we wish to
acknowledge the help that our colleague, Philip Tabor, has given us in
preparing Chapters 12, 13, and 14. Substantial sections of these chapters
are based on his original research.

We should also remark on the curious sustenance derived from the
genius loci of our University. We are conscious of both past influences
and common endeavours. Although Christopher Alexander graduated
from Cambridge some years ago, his presence is never far away, con-
stantly challenging and provoking. His has been a tremendous influence.
Then we must mention Bruce Martin, Colin Rowe and Colin St John
Wilson who as lecturers both stimulated and infuriated us in a way
which made sure that at the very least we thought for ourselves, but
who also drew our attention, in their diverse styles, to the intellectual
content of architectural discipline. Outside our own faculty, ‘quantita-
tive revolutions’ in the humanities have been in the air in Cambridge for
some time, in linguistics, economics, geography, history of populations,
archaeology and anthropology. These activities and concurrent deve-
lopments in the sciences were bound to impinge on architecture in the
end. Above all, however, we are greatly indebted to Sir Leslie Martin,
Professor of Architecture, who has given us unbounded encouragement
and support in our work for several years now.

Many people helped in the preparation of the copy. However, there is
one in particular, Catherine Cooke, without whose enthusiasm, intel-
ligence and skill in drawing and designing more than half the illustra-
tions the whole enterprise might well have foundered. Numerous typists
aided us at various times, but in the end most of the work was done by
Mrs Hogg and Mrs Skoyles to whom we are especially grateful.

Lionel March
Philip Steadman
Cambridge, 1970
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| Mappings and transformations

We are all familiar with the idea of a map. The architect’s drawing may
be considered to be a map. In the case of a measured drawing from an
existing building the draughtsman plots selected points of the real
building, such as roof lines and the corners of openings, and ‘maps’ _
these onto his drawing. There is in this instance a one-to-one corre- =~
spondence between the points in reality and their representation on the -
drawing, and vice versa. In a mapping mathematically understood, ..
this is not always so;ﬁ or does a mapping necessarily preserve spatial
characteristics such as length, area, angles, sense (left-handedness,
right-handedness) and shape.

The Union Jack has found new popularity as an ornamental design.
These uses are all mappings of the original. Any straight replication is a
mapping and the geometry of the original is unchanged except for size.
When the flag is stretched around a conical waste-paper bin it is dis-
torted, as it is when it is squashed into a circle on a clock-face. In these:
examples, whilst a one-to-one correspondence is maintained, the only
geometrical property which is preserved — apart from sense and that not’
always — is that of neighbourliness. Points which are near-neighbours in,
the original remain near-neighbours in the various mappings. We say 5
that these mappings are topologically equivalent. When the flag is cut
up to make a jig-saw puzzle there is again one-to-one correspondence:
but unassembled, for the flag as a whole, the topological equivalence

has gone, together with all the other geometrical attributes. Finally we
have seen shirts and hats made up from Union Jacks. Usually one-to-
one correspondence is not maintained since it is necessary, in order that
the clothes fit, to add gussets, to cut out holes and to take in tucks and
darts. Thus there may well be pieces of the original flag design used
more than once whilst others are not used at all.

Mappings need not be visual representations as our examples have been
so far. When an Englishman says his living-room is on the first floor,
his American friend may imagine that it opens directly onto the garden.
This is because the American first floor is the English ground floor, the
American second floor the English first, and so on. Such a mapping is
very simple and can be represented by means of the notation a — b,
meaning ‘@ maps onto ’, thus

0—1,1-2,2—3,...,n—>n+1

13
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or more concisely
E-A=E+1

where E stands for the English description and 4 the American. The
mapping is clearly one-to-one since

A—>E=A4—1.

Incidentally, the English word ‘storey’ maps onto the American spelling
‘story’, but this mapping is seen not to be one-to-one since given just the
American word ‘story’ we would not know which of the two English
words ‘storey’ or ‘story’ was meant.

A change of units gives us another example of mapping. Thus with

metrication of imperial units we map measures in one system onto
measures in another. For example,

I M = 304871 |

maps imperial feet onto metric millimetres, but for practlcal gurp
ding industry it has been proposed that the mapping taki

I—>M=30¥

where the traditional foot measure will in future be approximated by

a 300-mm modug ;

When a draughtsman measures the window opening as being one !
metre wide he will draw a line one centimetre long to represent it if

his chosen scale is 1:100. If the scale is / : k, the real length L is

represented by the mapped length M measured in the same units

according to the mapping

L—>M=I—.L.
k

The mapped length may sometimes be in different units as it used to be
when a designer spoke of the ‘eighth scale’. Then he referred toa s

the same units are used, that is to say, 96 ft in reality are represented
1 ft on the plan. It is obviously essential that this kind of mapping be
one-to-0

which mapped feet onto one-eighths of an ix;i.a scale of 1 : 96 w@

Similarly, we use percentages to reduce a set of figures to some common
frame of reference. Thus

S — P where P; = 100s;/ Zs;

and the itt figure s; in the set of figures S maps onto the percentage P;
of the set P of percentages. P; is given by the expression on the right
where Zs; is the sum total of the original figures for all i. So far we have
been rather slack in our use of notation. We certainly do not intend to
be rigorous in a strict mathematical manner any more than is necessary
to convey a feeling for quantitative appreciation.

Let us define a set as a well-defined collection of objects known as the
elements or members of the set. Sets are usually.denoted by capital *-
letters and their elements by lower-case lettergWhen we want to spell
out a set in full we write the elements between braces in the following
way:

A= {a,m,o,r}.

Order is not important in a set. Thus if

B={r,o,m,a}

we may agree with Sophia Loren that 4 = B. It is often necessary to
express the fact that an element belongs to a set and to do this we use
a symbol e as shorthand for ‘exists in’, thus

aceA.

But

beAd

uses the slash through a sign to state that element b does not exist in the

15
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set. A vertical bar, |, is used as shorthand for ‘such that’. Going back to
the percentage mapping we could have expressed the mapping more
precisely as

M: {seS}=S—>P={peP|p= 100s/zs}§
Figure 1.1
or in plain English: ‘“The mapping, M, takes the set, S, comprising ¥

-elements s onto the set, P, of percentages consisting of the elements p

such that p equals one hundred times s divided by the total sum of al
the elements g

In many cases percentages can be a useful scale of comparison, but they
can be misleading. An example will make this clear. An English architect Figure 1.2
studying archaeological remains in Rome was worried by the prospect
of the midday sun. Before leaving his hotel he asked the porter how hot
it would be later on in the day. The porter said that the temperature
would be 100 9 higher at noon than at breakfast. The Englishman
thought the Italian must be boasting and placed a bet against such an
event. At noon, however, the temperature was indeed 100 %, higher and
the Englishman had to admit he had lost, although in his opinion it had
only gone up 45 %. Why ? Quite simply, the porter used the Celsius scale
and the Englishman the Fahrenheit. The mapping of one onto the

other may be represented

M: {ceC}=C—>F={feF|f=18c+ 32}

and when the temperature rose from 15 °C in the morning to 30 °C at
noon, the Italian could claim that it had risen by 100 %;. For the English-
man, however, the temperature had gone from 59 °F to 86 °F — a mere
45 %;. This demonstrates the workings of the political trick whereby one

party claims great economic advancement and the other points to %fou

stagnation. The problem arises not so much because of the scale on
which things are measured but of the base, or zero, from which
measurements are taken. Politicians naturally tend to adopt that year
as base which most enhances the result they are demonstrating.

Throughout this book we shall have occasion to refer to sets of numbers.

We shall always be concerned with real numbers. The real number = '
system, R, may be visualized as a one-to-one mapping of numbers onté

points of a straight li%We mark an origin on the line corresponding

to the number zero. We then choose any other point to the right to
correspond to the number 1. This gives us a unit of measure. By marking
further points at unit intervals to the right we generate the naturalg_}
numbers {1,2, 3,4, ...}. We call this set

By marking off unit intervals to the left we map out the negative integers.
The set of all negative and positive integers {... — 4, — 3, — 2, — 1,
0,1,2,3,4,..}is usually referred to simply as the set of integers, Z. .ﬁ

! | | | 1 | | |
1 I 1 T I I | T

—4 -3 =2 -1 0 1 2 3 4

We will have occasion to refer to the positive integers (including zero)

and for this we shall use the character Z,. If we now subdivide these unit
intervals in integral proportions we shall produce a mapping of the
rational numbers for which it is customary to use the letter Q. We have
1/4€ Q, —8/11 € Q,and, in general, m/ne Qifm,neZ.

Numbers such as 4/2 or 7 which cannot be expressed as the ratio of two
whole numbers are said to be irrational, Q" Every point of our line now
has a corresponding number in the real number system, a system which
includes the natural numbers, the integers, the rational numbers and the
irrational. To summarize:

N ={1,2,3,..}
Z =0, +1, 2, +3,..}
Z,=1{0,1,2,3,..}

Q = {m/n|m,neZ}
Q' ={xeR|xeQ}. &

The last statement says that the set of irrational numbers Q’ consists of
elements x in the real number system such that x is not a rational number

in Q.Clearly N,Z,Z,, 0, Q' € R.

Frequently, in practical situations, it is necessary to ‘round’ figures to
the nearest fraction or decimal part within a given degree of accuracy.
For example,

17
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To the nearest 0-001 0-1 0-25 10 Figure 1.3

7 = 3-1415927... 3-142 31 3-25 3-0

Rounding also occurs in industry when a range of ad hoc component
sizes is reduced to a set of definite modular increments. Suppose, for
example, a product is made in five lengths — 5660 mm, 5630 mm,

5600 mm, 5560 mm and 5530 mm — and it is considered that in future
these sizes may be limited to modular dimensions based on 100 mm,
then we map (round) the set of existing dimensions into new ones:

Existing Existing New New
components dimensions dimensions components
A 5660 - 5700 F

B 5630

C 5600} —- 5600 G

D 5560

E 5530 — 5500 H

Another kind of mapping, which is also many-to-one, occurs in clock
arithmetic. We are all familiar with the way in which we usually enu-
merate the time of the day ‘ten o’clock, eleven o’clock, twelve noon, one
o’clock, two o’clock’ unless we are travelling, when schedules are listed
on the 24-hour system as ‘ten hundred hours, eleven hundred, twelve
hundred, thirteen hundred, fourteen hundred.” We say that in the first
instance the number of hours is méasured modulo 12, and in the second
modulo 24. In general,

o= modul(,
means that a, or the quantity b modulo r (more briefly »# mod r), is 3
remainder after b has divided by a positive non-zero integer, %
a whole number of time§§ We may express this in set notation as follows

M: beZ}y=B>A={aeZ |0<a=b—ir<rieZ}

For example, mod 3 of the numbers 0 to 10 maps onto {0, 1,2}

o 1 2 3 4 5 6 7 8 9 10
j

I |
0 1 2

Another useful mapping occurs when we measure lengths between
points. For example, the length between the point labelled 2 on the real
line R and the point marked 3 is clearly 3 — 2 = 1, but in general we
obtain the result @; — a, for the points ‘a,” and ‘a,’ and this could be a
negative quantity if a, happened to be less than a,. A negative length
meaningless, or rather it means too much. It means not only the magni-
tude of length involved, but also the direction in which the measurement
is made, that is from right to left gives a negative quantity while left
right gives a positi e therefore use two vertical bars, for example

| (@, — a,) |, to tell us to ignore signs and to state simply the positive
magnitude or absolute valaof the quantity between bars. Thus, ifi e Z
we could define Z as

Z,={jeZ|j=|i|,foreveryieZ}
which represents the two-to-one mapping
i—~j=|i|.

We said earlier that the architect’s drawings may be considered to be a
map. In fact a variety of mappings are used in everyday practice by
architects and designers. To start with the simplest: when a pen,gg;_a?

drawing of an elevation is inked in, the mapping i the identiy tr
formation of the elevation onto itself. This may seem trivial, but t
identity mapping is of considerable importance in mathematical ar
ment and we shall return.to it in our discussion on symmetry and t
description of shape.nw

When we take prints we produce isometries of the original ; that is,
having iso-, equal, -metries, lengths. These are the transformations that
preserve lengths, but permit changes in position caused by rotation,

19



Figure 1.4

Mappings of Le
Corbusier’s elevation of
a Maison Minimum:

a, identitys-

b, isometrz—j

€; similaritﬁ:: 3

d, afﬂmta-:‘;

e, perspectivity

f, topology g

20

1 For an introduction to Le Corbusier’s work see Francoise Choay, Le Corbusier, New
York, George Braziller Inc., 1960. The designs for Maisons Minimum are illustrated on
pages 126-7 of Le Corbusier and Pierre Jeanneret, Oeuvre Compléte 1910-1929, Zurich,
Editions Girsberger, 1937.

2 See Oeuvre Compléte 1910-1929, pages 78-86.
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Figure 1.7
House plans showingg‘
reflection and translation

§

-

reflection or repetition of the original. If a negative is put back to front
through a print-machine the lettering on the print will read backwards
and the elevation will appear as if in a mirror. We say the elevation is
reflected.

In Figure 1.4a we show the elevation of Le Corbusier’s design for a
minimum house (1925).! If the architect had wanted to arrange these
houses along a street he might well have handed them alternately so
that a pair of neighbouring houses were reflections of one another.
Figure 1.4b shows such a set of isometries. We can also see isometries in
the plans of semi-detached and terraced housing. At Pessac, near
Bordeaux, Le Corbusier designed three types of house.? In one type he
reflected the plan about the party wall to form two semi-detached
dwellings. The two plans are identical apart from position and the fact
that they are handed or reflected (Figure 1.5). In the second type the
house is simply repeated along a line to form a terrace. The plans are not
handed, and we say they are translated (Figure 1.6). In the third type he
creates a terrace by reflecting (Figure 1.7) the plan about its midpoint

21



Figure 1.8

Rotated house plans
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and gliding it one bay so that houses alternately ‘front’ and ‘back’ onto
the road. He also uses rotation in an unbuilt design for a semi-detached
house. Here Le Corbusier rotates (Figure 1.8) the plan through a half-
turn to make an interlocking pair. All of these plans exhibit isometry:
this mapping not only preserves lengths, but angles as well.

If we now change the scale of our drawings we introduce the similari-
ties—angle-preserving transformations which permit enlargement or
reduction of length. Like isometries, similarities may be handed. Quite
typically we might show on the same drawing an elevation of a standard
house, and at a reduced scale the street elevation of a series of such
houses (Figure 1.4c).

When we project an elevation to give an angled view of it in such a way
as to map parallel lines onto parallel lines we make what is called by - i
mathematicians an affine transformation; that is, a transformation
having an affinity with, or Ilkeness  to, t the origi Axchltects frequent

use affine ’Eraﬁsfvrn'fﬁ?i“ons in which the lengths of verﬁ'cmlﬁe‘s and thos

parallel to the two horizontal rectangular axes are preser_y_gg Such
projection i often called ‘fsometric’. In ‘mathematical terms this s

> since th lin s%tiifaﬂei to the prmcq;aIax
are not pre: . An ‘isometric’ drawing is not to be confused with
the mathematical isometric transformation for which al/ lengths are
preserved. Nevertheless, whilst an ‘isometric’ drawing is an example of
an affine transformation it is not typical: in general an affine trans-
formation does not preserve lengths, only parallelism. In Figure 1.4d we
show an affine projection of the elevation for Le Corbusier’s minimum
house, in this case ‘isometric’.

Figure 1.4e shows a perspective view of the same elevation. Angles and
lengths are not preserved but straight lines remain straight. Thisis a

special case of the class of projectivities to be found in modern geometry.

Figure 1.9

Figure 1.10

It is known as perspectivity. Essentiall %a perspectxvnty isa mapgmg
(Figure 1.9) of typical pomts'ﬂ 'B,C, D...onto A’, B, C’, D'... so that
the lines 44', BB', CC’, DD'... . meet at a point O called the centre of 1 tijz
al hatieﬁgth is not preserved: AB# A'B’. Nor,

' larity, isthe raﬁb ‘dﬂengths preserved AB/BC ;& 'B’ IE" k.

abbreviated (4B,C D) and is known as the cr

alin the development of prdjécﬁve geometry
the theory of lmear transformation

Finally in the elevation of Le Corbusier’s two-storey version we havg

a mapping in which lengths, ratios and even ratios of ratios are not -
preserved. What is preserved is ‘neighbourliness’. Points which are near
to one another in the ongmal elevation continue to remain near in the "
new elevation. Such a mapping, as we said in our early example of thc
Union Jack, is topological. Due to the preservation of nelghbourhngss .
the order of a set of points along a line — not necessarily straight — is
kept under a topological transformation (Figure 1.10). Thus, as we see
in Figure 1.4f the semi-detached version of Le Corbusier’s Maison
B@um is topologically equivalent to the detached house.
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Figure 1.11
We have considered the following mappings, or more precisely, trans-

formations: identity, isometry, similarity, affinity, perspectivi
topology,,‘;hese can be tabulated (Figure 1.11) to show clearl}%ow the
various constraints are relaxed — those preserving the invari f
position, lengths, angles, ratios, parallelism, cross-ratios — y
relaxing the conditions that straight lines map onto straight lines whilst
maintaining the invariance of point ordea>

Transformations of this kind are also familiar off the drawing-board.
When projecting a slide onto a screen we produce a similarity only if the
surface of the screen is parallel to the face of the slide. When this
condition is not satisfied the projection is a general perspectivity.
Shadows of furniture cast by an electric light onto the floor or wall are
perspectivities. But shadows cast by the sun onto a flat surface are
affinities. This is because the sun’s rays are for most intents and purposes
parallel and, consequently, parallel lines are mapped onto parallels. We
see that an affine projection is a special case of a perspectivity when the
centre of the perspective is at infinity.

The obstruction to daylight reaching a point within a room is found by
mapping the solid buildings and objects of the external environment
onto the window opening according to a perspectivity from that point.
(We discuss this further at the end of Chapter 7.) This can be done
because daylight, unlike sunlight, is considered to be non-directional.
For sunlight, however, the obstruction is represented by an affine pro-
Jection onto the window plane. Projections of this kind onto curved or
irregular surfaces produce topological transformations.

Perspective drawing and shadow projection (sciagraphy) are practical
applications of descriptive geometry invented by the French mathema-
tician Gaspard Monge around 1765. It was a specific architectural —
albeit military — problem that led Monge to his general mathematical
formulation. One day, as a draughtsman in the military school at
Méziéres, he was required to work out from the data supplied him the
défilade, the gunfire-free shadow, of a proposed fortress. This process
could then be done only by lengthy arithmetical calculations. Monge
substituted for this a geometrical method which produced the result so
quickly that the commandant at first refused to accept it. A regulation
time having been allocated, the commandant just knew it could not be
done in less! But soon the value of the discovery was recognized.

1 odl e
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Figure 1.12

Conjectural diagram of
the topological mappings
in cortical projection of
a square when the fixa-
tion point, F, is changed:

a, fixation on the upper
right corner of the
square, which thus falls
in the lower left visual
field and produces an
excitation in the upper
right cortex only

b, bilateral projection
with fixation on the
centre of the square

¢, bilateral fixation

on the midpoint of the
top edges. After D. O.
Hebb, 1949
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3 For a modern textbook see R. G. Robertson, Descriptive Geometry, London, Pitman,
1966.

4 For a discussion of this see D. O. Hebb, The Organisation of Behaviour, a Neuropsycho-
logical Theory, London, Chapman and Hall, 1949.

The method is one that architects, engineers and designers use all the
time, consisting simply of the orthogonal projections of a solid object -
onto a set of planes mutually perpendicular to each other to give plans- .
and elevations. So familiar is this that it may come as a surprise to learn
that the method was discovered as late as the mid-eighteenth cenh%
and further that it remained a military secret for thirty years — officers
instructed in the method were strictly forbidden to communicate it even
to those engaged in other branches of the public service — until the
Revolution, when Monge was at last free to lecture on the subjec
the new Ecole Polytechnique, his notes being subsequently published as
Géométrie Descriptivein 1795.3

We have said that some mappings are topological. It is interesting that
in human perception the patterns of cortical excitation aroused by
looking at different parts of the same pattern have been shown to be
topologically equivalent.? A square is mapped via the retina onto the
cortex as a curvilinear quadrangle. Usually, in fact, there is not just one
cortical pattern but two bilateral ones, depending on what point our
attention is fixed upon.

F

‘ ........ ’

With bilateral and topological projection onto the cortex in mind, we
can appreciate how young children so easily confuse the lower-case
letters:

KLY

Figure 1.13
Three house projects by
Frank Lloyd Wright:

a, Life ‘House for a
family of $5000-$6000
income’, 1938

b, Ralph Jester House,
Palos Verdes, California,
1938

¢, Vigo Sundt House,
near Madison, Wis-
consin, 1941

bedroom
Sundt bedroom
car port
dining-room
entrance
family room
bathroom
kitchen
living-room
office

pool

terrace

yard

NN OMNARSTEmDAOR®

P a

In many type faces, especially those used in children’s readers, these
letters are precise isometries of each other and children find it difficulf
to distinguish between them: a distinction to be made solely ﬁc’cor&
to the letter’s vertical orientation and handedness. It may also be seen -
how children learn first to recognize the difference between the letter &
pairs b, d and p, q since reflection in a horizontal plane does not oc

in cortical projection, whereas in the vertical plane it gives rise, for
example, to a bilateral projection onto the cortex of a p and a q fi
eMﬁWt’ ¢ This point does not appear to have been
recognized in the de oﬁw initial teaching alphabet, although many
other alphabets — from primitive hieratic Egyptian to the sophisticated
Cyrillic notation, invented by a ninth-century monk called Cyril, and the
basis of modern Russian — appear to avoid this particular problem.

Sometimes, objects which appear to be very dissimilar on first acquain-
tance may be seen, later, to share an underlying structural pattern. In
Figure 1.13 we see three houses designed by the American architect



Figure 1.14

Graph of space and
room linkages for the
three Frank Lloyd
Wright projects. The
dotted lines refer to the
additional bedroom, B’,
in the Sundt house
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5 A good guide to this prolific architect’s work is Frank Lloyd Wright; Writings and
Buildings, selected by Edgar Kaufmann and Ben Raeburn, New York, Horizon Press,
1960. See also Vincent Scully, Frank Lloyd Wright, New York, George Braziller Inc., 1960.

8 Introduction to Mathematical Philosophy, London, Allen and Unwin, 1960, p. 3.

Frank Lloyd Wright.® In them he uses a range of ‘grammars’, by which
he meant, above all, the controlling geometric unit which ordered the
plan and pervaded the details. The unit is an equilateral triangle in

one house, a four-foot square in another, and a circle in the |

third. Each building has extremely marked individuality, so much so
that each looks completely different from the other. Two of the houses
were designed in the same year, 1938, and the third, the Sundt House,
two years later. Whilst they may look different, they are in fact topo-
logically equivalm If each functional space is mapped onto a point and
if, when two spaces interconnect, a line is drawn between their represen-
tative points we produce a mapping known as a graph (Figure 1.14).
Having done this for the three houses we find that they are topologically
equivalent in plan, excepting the additional bedroom in the Sundt
House. In all three houses we see that we arrive under a car port and

we may either pass through a yard area to the office and kitchen,

or we may proceed through to the entrance hall or loggia, from which
the kitchen may be reached, and on to the family room or covered
patio, according to the climate, around which radiate the living-room,
dining-room, bedroom and terraces — one of which overlooks a swim-
ming pool.

These examples have served to introduce mathematical entities such as
sets and graphs, the idea of mapping, and the concepts of rotation,
reflection and translatioﬁ We shall return to these in later chapters.
At this point, however, let us reflect on the idea of mapping. Mapping is
a fundamental act in any process of abstraction or pattern recognition.
When Bertrand Russell writes, ‘It must have required many ages to
discover that a brace of pheasants and a couple of days were both
instances of the number 2’, he is describing an exceedingly germane
act of mapping which we all repeat in our childhood at some time or
other.® As we have seen, mapping is not necessarily a means of visual
representation. It is a way of structuring information.
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Figure 1.15

Without a context it is
unlikely that this illustra-
tion can be mapped onto
some meaningful inter-
pretation, but see

Figure 3.18

LA & L X 2 2

7 See James D. Watson, The Double Helix, London, Weidenfeld and Nicolson, 1968.

A given set of data usually only acquires significance when we map it
onto a pattern of some kind, indeed it is easy to recognize when we

make new observations of the world about us that we generally map
them onto our old observations and experience. There is a remarkable
passage in Captain Cook’s Voyages where he describes how the
Australian aborigines on the shore seemingly failed to ‘see’ his ship
sailing in: we might assume that they had no previous experience upon
which to map the new phenomenon. Mathematics is the subject, witho&t;‘i
equal, for the making of new, often unfamiliar synthetic patterns, and
the history of modern science is full of examples of their use, such as the
classic mapping of observations into a non-Euclidean frame of reference
which led to the theory of relativity, or the mapping of experimental
facts into the abstract matrix of the double helix in the discovery by °
Crick and Watson of the structure of the DNA molecule.” In the latter
case, Pauling’s abortive attempt to fit observations to a treble helix
stands as a warning that data are not in themselves structured but require
structuring, and that the mappings we choose may as much blur and
confuse as they clarify and resolve.

For the creative worker in the arts or sciences it would seem essential

to cultivate as many mental sets as possible upon which to map the
observed world, and in this the synthetic, mathematical generation of "
patterns is seen to be an aid. A set of data rarely has just one pattern to
the exclusion of others. Often one pattern is so obvious that we tend fg .
think of it as the only pattern of the set. This is a mistake. The only

thing that is unique about the pattern is our manner of seeing it — our
mapping of it onto some preconceived notion — for the data themselves
have all the patterns of which they are capable (Figure 1.15).

It is clear that the context in which the data are presented is important
in regard to the kind of mappings we think appropriate. In an intel-
ligence test we would, in general, complete the series 2, 4, 6,... with 8,
10, 12. But outside, at a football match, we might well think of 2, 4, 6, 8,
who do we appreciate’, or playing cards ‘2, 4, 6, 8, 10, Queen’, or
rolling a dice on successive sides 2, 4, 6, 5, 3, 1°, or cooking 2, 4, 6, off,
2, 4’ as we turn the hot-plate control. In each context the answer is
reasonable and the pattern valid. In the examination hall we must close
our minds to all these possibilities and prove how intelligent we are at
passing examinations by asking the pernicious question ‘What answer
does the examiner expect?’.
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Figure 1.16
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We assume he expects the answers to be taken from the set of natural
numbers

{1,2,3,4,.n,n+1,...}

and since Ae has selected the first three even numbers, we write the next
three. This is a possible answer. It is certainly not a probable answer.
Given just the first hundred natural numbers to choose from at random
the probability is about one in a million that 8, 10, 12 would occur. The
pattern is of our making, and there are patterns in 2, 4, 6 which might
lead us to extrapolate quite differently

2= 2 D= 2 1x1x2 = 2
24+ 2= 4 2X2= 4 2x1x2 = 4
24+ 4= 6 IX 2= IX1Ix2%3 = 6
44 6=10 Ix3=9 2X1xX2X3 =12
6+10=16 Ix4=12 IxlIx2x3 =18
10+ 16 =26 4x4=16 1X1Xx2Xx3x4=24

These are just a few not so convention-bound possibilitig.

When we consider the environment about us, the possible mappings are
innumerable. Yet, if we assume the role, and therefore the intellectual
ambience, of a planner, a traffic engineer or an architect, we can be
almost as sure as we were about answering the intelligence test that we
will confine our range of mappings to a particular set, thus excluding
many others. The danger in this is that these convention-bound map-
pings may cease to fit the facts; or at least they may fail to recognize
emergent patterns. Our argument is that a new pattern will be recog-
nized only by an observer who has available, or develops, an appropriate

range of mental sets, abstract or otherwise, upon which to map the data,

and who actively seeks not to corroborate the habitual but to conjecture
potentiality. v

Two artists have testified to this process. Leonardo da Vinci describes a
course of study for an artist and tells how to increase talent and stimu-
late various inventions:
‘... look into the stains of walls, or ashes of a fire, or clouds, or
mud or like places, in which, if you consider them well, you may
find really marvellous ideas. The mind of the painter is stimu-

Figure 1.17

Berne, 1910. Drawing by
Paul Klee from Werner
Haftmann, 1954

& From I. A. Richter, Notebooks of Leonardo da Vinci, London, Oxford University Press,
1952, p. 182.

9 Werner Haftmann. The Mind and Work of Paul Klee, London, Faber & Faber, 1954.

lated to new discoveries, the composition of battles of animals
and men, various compositions of landscapes and monstrous
things, such as devils and similar things, because by indistinct {3
things the mind is stimulated to new inventions.’®
But the mind needs to be receptive, and a wide range of poter:_:rig
mappings must be made before — click! a ‘good integrated fo
emerges.

Werner Haftmann has described how Paul Klee, perhaps the most
seminal of all modern artists, had heard colourful Oriental fairy-tales
told to him and illustrated by his grandmother.® And how, in a restau-
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10 Robert Hooke. Micrographia, or Some Physiological Descriptions of Minute Bodies Made
by Magnifying Glasses with Observations and Inquiries thereupon, facsimile reproduction of
the first edition published by the Royal Society in 1665, New York, Dover, 1961. See
particularly pages 112-16.

rant owned by his uncle, there were tables with marble tops whose fine
veinings he would stare at for hours on end, until the complex patterns
induced elaborate dream-images. Such were the origins of Klee’s first
fantastic illustrative drawings, which were closely related to the fairy-
tale world about which he had heard as a child. Klee’s drawing of Berne
makes explicit this kind of relationship, and allows us to participate in
such ‘discovery’ for ourselves. A city seen in the grain of wood, or the
veins of marble, or the circles and triangulations of the geometer’s art,
or the cellular structure of sponge: in each a mapping is involved, one
set into another.

Certainly one of the most striking examples in the history of planning
concerns the proposal for the rebuilding of London after the Great Fire
of 1666. Sir Christopher Wren had been Sevilian Professor of Astro-
nomy at Oxford and had just returned at the time of the Fire from an
extended visit to France where he had been most impressed by French
Renaissance architecture and planning. He was at the time, according

to Newton, ‘one of the three best geometers’. Dr Robert Hooke was
Gresham Professor of Geometry, Secretary of the Royal Society, and
the author of Micrographia, the first important work on the world as
seen under the microscope.® These two men were both Commissioners
for Rebuilding the City of London, Wren was a representative for the
King, and Hooke, for the City. Both men submitted plans. Wren mapped
his concept into his most recent experience: the ideal of the European
Baroque city which he had seen emerging in Parisian works and which
had undoubtedly excited his abstract geometrical interest. Hooke
mapped his idea of the City into the cells of the sponge, the cells which
he had discovered under the microscope with their characteristic
rectangular structure. Wren produced a radio-axial city: Hooke, the
first consciously designed cellular city, a remarkable and singular
invention. The city that was rebuilt was neither of these, but the one that
everyone could grasp: excepting detail, of road width and constructional
standards, the new London mapped, in almost one-to-one correspon-
dence, into the city as it had been before the Fire.

So much for the fundamental importance of mapping in our thought
processes and creative activities in general. In architectural and planning
studies we have become habituated to at least three distinct ways of
mapping buildings and urban space. We might say that we map the
complex environment into separate sheets: one sheet maps the volumes,

Figure 1.18
Plan of London before
the Great Fire

Sir Christopher Wren’s
proposal for the recon-
struction

Dr Robert Hooke’s
proposal

The cell structure of
cork as seen through

Hooke’s microscope and

illustrated in Micro-
graphia
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11 For a discussion on taxonomic methods, see O. P. Tabor, Traffic in Buildings 3; Analysis
of Communication Patterns, Working Paper 19, University of Cambridge, Land Use and
Built Form Studies, 1970. And on stochastic and statistical theories see, for example,
contributions in William L. Garrison and Duane F. Marble, eds., Quantitative Geography,
Northwestern University Studies in Geography, no. 13, 1967, pp. 1-32; and BrianJ. L.
Berry and Duane F. Marble, Spatial Analysis, a Reader in Statistical Geography, Engle-
wood Cliffs, Prentice-Hall, 1968. See also A. G. Wilson, ‘A Statistical Theory of Spatial
Distribution Models® in Transportation Research, vol. 1, no. 3, 1967, pp. 253-70.

surfaces and edges of the built environment, another the networks
formed by the communication, transportation and service channels, and
another the movements and patterns, associated with human activities.
It is clear that the various mappings are interrelated, and many would
argue that it is precxsely the relationships between these mappings that
are most important and not those within the mappings themselves.

However that may be, the divisions do correspond to three broad
mathematical interests. In the first mapping we are mainly concerned
with the geometry of the pla% we are interested in the way in which
planes come together to form volumes ~ floor, walls, ceilings — to create
a room; ground, walls, roof to make a building — and in the ways in
which planes can be subdivided and punctured. We shall find that
projection and transformation geometries, isometry and symmetry, set,
group and number theories are particularly relevant here.

For the second mapping we need lines in two or three dimensions. We
map routes into lines, pipes into lines. The lines intersect at points
which correspond to junctions or nodes. Often we are more interested
in the relationship of lines and nodes than we are in any definite dimen-
sional characteristics: we are then interested in graph theory. At other
times we may be thinking of the direction and magnitude of the lines

” and we shall find that vector representation is convenient.

ur interest in these points may be in their pattern, in how
random or regular the pattern. In this we would need the statistical
procedures of the ecologists and geographers. Our interest may be in
grouping activities into clusters representing certain common attributes,
in this we use various taxonomic techniques. Or we may be concerned
with the movement of points, for which an analogy with statistical
mechanics may be appropriate. The activities may be seen to be sub-
ject to random processes and stochastic theory may be relevant. For
small groups and the micro-analysis of activities, set and graph theories
have been employed by sociologists and anthropologists with some
success. From the geometrical point of view of this book, however, these
subjects have been considered too remote from our main theme to be
included specifically.

The tilrd mapping usually takes the form of reducing activities to sets of

Figure 2.1
Combinations of axes

within a square plan.

After J. N. L. Durand

2 Translations, rotations and
reflections

The nineteenth-century architect, Viollet-le-Duc, once wrote:

‘Symmetry — an unhappy idea for which, in our homes,

we sacrifice our comfort, occasionally our commonsense

and always a lot of money.’?
The symmetry he had in mind was that imposed on architectural forms
by his contemporaries, the academicians of the Beaux Arts. The plans
of their building forms exhibited, almost without exception, bilateral
symmetry of the whole and the parts: most plans could be resolved into
a set of axes about which reflection was either total (major axes — usually,
in fact, just one) or partial (minor axes). Out of this symmetry in plan
there arose elevational reflected symmetries of the kind we have referred
to in the previous chapter.

Figure 2.1 shows compositions of axes within a square plan from

J. N. L. Durand’s treatise Legons d’ Architecture published in 1819.
Whenever a Beaux Arts architect had a planning problem to solve he
would map the requirements into abstract generic structures of this - |
kind until a satisfactory fit was achieved between the uses of various
parts of the building and their geometric disposition, or parti. At the
beginning the method was new and revolutionary. Here was a doctrine
of architecture at once systematic and synthetic, owing little to prece-
dents. But by mid-century, when Viollet-le-Duc wrote, architects were
beginning to rely on precedents and examples from past styles of
architecture for their invention, rather than on the ‘style-free’ abstract
precepts of Durand. As Professor of Architecture at the same Ecole
Polytechnique as the mathematician Gaspard Monge, and in the
scientific spirit encouraged by Napoleon in establishing the new school,
Durand set out his Legons like the axioms and theorems of a geometer.
The treatise was concerned mainly with public buildings which the new
Republic required and for which bilateral symmetry was often ap-
propriate, and not so much with private dwellings which, Viollet-le-Duc
felt, suffered undue corseting by symmetry.

Whilst other forms of symmetry were known to architects at the time,
their full appreciation was dependent on developments in mineralogy,

1 From Discourses on Architecture, vol. 2, translated from the French of Eugéne-Emanuel
Viollet-le-Duc by Benjamin Bucknall, New York, Grove Press, 1959, pp. 267-8.
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2 See F. C. Phillips, An Introduction to Crystallography, London, Longmans, Green, 1946,
We illustrate examples of Haiiy’s cubelet approximations in Figure 5.27.

3 For a commentary on nineteenth-century morphology see the contribution by the pioneer
town-planner and biologist Patrick Geddes, ‘Morphology’ in The Encyclopaedia Britannica,
vol. 16; 9th edition, 1898, pp. 837-46.

crystallography, morphology and eventually mathematics itself.? It was
yet another Professor of I’ Ecole Polytechnique, René Just Haily, who
first formulated the ‘law of symmetry’ for crystal growth and who, as
we shall see in Chapter 5, proposed a method of describing known
crystal forms and creating synthetic, or hypothetical ones. His method
was to study the symmetrical accretion of certain molécules intégrantes,
which in themselves were invariant and incapable of further division,
around definite axes of growth. Haily’s German translator, Christian
Samuel Weiss, stressed the importance of the axis which is truly the line
governing every figure round which the whole is uniformly disposed.
‘All the parts look to it, and by it they are bound together as by a
common chain and mutual contact.” This statement might well have
been written by Durand about the axis in buildings. Haily wrote Traité
de Minéralogie in 1802 and in so doing earned himself the title ‘father
of crystallography’. And incidentally, Monge’s descriptive geometry
proved invaluable in the early graphic representations of complex
crystal forms.

In 1813 A. P. de Condolle classified the symmetries to which flowers
conformed in Théorie Elémentaire de la Botanique. He distinguished
between the fundamental unity of structural type and the more super-
ficial likeness of physiological adaptation. Earlier Goethe had reasoned
that particular forms of flowers and plants were but manifestations of
general abstract patterns. Knowing these, he had written to Herder in
1787, ‘one could go on endlessly inventing plants which, even if they do
not exist, might well do so without being just artistic fantasy, for they
would have inner truth and necessity.” Goethe summed up much of his
thought on the matter in his celebrated essay Zur Naturwissenschaft
iiberhaupt, besonders zur Morphologie of 1817 in which he proposed the
word ‘morphology’ for the study of unity of type of organic form.

In his Tagebuch Goethe had written of ‘architecture... being like
mineralogy, botany and zoology’, in as much as these subjects shared

a common interest in spatial structure.?

Goethe was not a trained scientist and his cause was taken up by
Auguste de Geoffroy Sainte-Hilaire who published Morphologie
Végétale in 1841. Geoffroy was a notable biologist who had been
responsible for interceding during the Revolution on Haiiy’s behalf
when the latter was in prison and near to execution. Together with
Darwin’s work, the contribution made by Geoffroy to morphology
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Figure 2.2

Solid pellets approxima-
ting simple forms. After
Robert Hooke

Figure 2.3

Development of a struc-
tural unit to replace solid
cubelets. After F. C.
Phillips

Figure 2.4
Crystal formations. After
Viollet-le-Duc

inspired Ernst Heinrich Haeckel in his systematic study first of radio-
larians, and then of organisms in general, from the point of view of
symmetry; that is, the study of promorphology. Haeckel published
Generelle Morphologie der Organismen in 1866, but his fame outside
science rests upon the magnificently illustrated Kunstformen der Natur
of 1899 — a work of great visual joy.

By mid-century Haiiy’s crystallographic theories had been modified

and extended by others, Weiss in particular, away from the solid

cubelet molécules. First, an older notion of Robert Hooke’s in Micro-
graphia, which suggested that substances — and indeed organisms —
might be considered to be made up of spherical pellets packed together
in various ways, was revived (Figure 2.2); and then this physical model
was dematerialized to become a geometrical system of points exhibiting
certain symmetry properties: the abstract structure of modern crystal-
lography. We have already met something similar to this in our analysis
of three houses by Frank Lloyd Wright. There we represented each
space by a point and its adjacency with other spaces by a line. In this
example we were interested in demonstrating that the plans were
topologically equivalent, but crystallographers are concerned with
isometric equivalence, or automorphism, and their abstraction replaces
solid crystalline units with a structural unit, or unit of pattern, preserving
length but otherwise devoid of physical substance (Figure 2.3). )

It was this unit of pattern and the laws governing its combination that
Viollet-le-Due wrote about in Dictionnaire Raisonné de I’ Architecture
Frangaise published in 1866 when he argued that such symmetry as
occurred in nature was not clapped on form, but was the very principe
governing its growth, development and formation. In a remarkable
passage he described mineralogical structure — he was not only an
architectural innovator but also a sufficiently skilled geologist to be
commissioned by the French authorities to carry out a survey of the
Alps — and then he continued
‘I have simply been trying to make it clear that the first creative
event in the world we live in happened according to a rigorously
applied principe, the only possible principle. If we follow all the
phases of inorganic and organic creation, we shall soon recognize
the logical order, in its most varied and even apparently different
aspects, which results from a principe, from an a priori law, from
which it never departs. It is from this method that all these acts
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One of the structural
systems underlying
Moorish ornaments.
‘The number of patterns
that can be produced
[based on such a system]
would appear to be infi-
nite.” After Owen Jones
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4 Translated by Lindsey March.
5 Owen Jones. The Grammar of Ornament, London, Day and Son, Folio edition, 1856.
6 See Introduction to the first edition of Le Corbusier’s Oeuvre Complete 1910-1929.

7] got a packet of onion skin...and traced the multifold designs. I traced evenings and
Sunday mornings until the packet of one hundred sheets was gone and I needed exercise
to straighten up from this application.” Frank Lloyd Wright, An Autobiography, New
York, Duell, Sloan and Pearce, 1943, p. 75.

gain the style with which they are saturated. From the mountain
down to the smallest crystal, from the lichen up to the forest oak,
from the polyp to man himself, all possess style, that is to say

a perfect harmony between the result and the means used to
obtain it.’*

This preoccupation with principe, or in our terms structure, is seen in
the works of many authors during the nineteenth century. The keywords
of the century for poet and scientist were continuity and unity. No
longer were events or objects looked at in isolation one from another,
but now they were seen as part of a grand continuum governed by a
finite and discoverable number of laws from which nature, or art for
that matter, derived its essential unity. Typical of this approach, as
applied to the decorative arts, is Owen Jones’s monumental and
exhilarating work The Grammar of Ornament® published in 1856. Jones
was an English architect who had collected together examples of
ornament from many different cultures and ages. He attempted to
classify ornament according to its underlying structural similarities just
as Durand had attempted for architecture in Recueil et Paralléle des
Edifices of 1800; Goethe, Condolle and Geoffroy had done for the
vegetable kingdom ; Haiiy and Weiss for crystal forms; and Haeckel was
about to do for radiolarians. Years later, Jones’s book excited both the
young Le Corbusier who discovered itin L’ Eplattenier’s ‘modest
library, which contained all he judged necessary for our mental pabulum’
at Chaux-de-Fondes ;¢ and the youthful Frank Lloyd Wright” who
worked through the nights tracing from it to exercise his skill at drafting
before applying for a job with Louis Sullivan, ‘the father of modern
architecture’, in Chicago. Both have written to say how deeply im-
pressed they were by Jones’s demonstration that beneath the superficial
varieties of appearances lies the invariable logic of geometry (Figure
2.5.)

It is well known that John Ruskin did much to promote the moral
standing of modern architectural philosophy, but not too much has
been said of his interest in crystal forms, which typically he bent to
ethical purposes in a lugubrious set of lectures to schoolgirls on the
elements of crystallization : The Ethics of the Dust, 1866. However,
contrary to the other authors, Ruskin was interested in characterizing
the idiosyncratic appearance of crystal forms rather than their under-
lying symmetry. He attacked Jones’s concept of ‘conventionalization’ on

.

Figure 2.6a

Figure 2.6b

Figure 2.6¢
‘A choice sporting
neckerchief.’

the grounds that if it were true it would be possible for designers to
produce ornamentation though they had ‘no more brains than a
looking glass or a kaleidoscope’.

In an essay, Modern Manufacture and Design, 1859, Ruskin tells the
story of a friend who maintained that the essence of ornament consisted
in three things : contrast, series and symmetry. Ruskin replies that none,
nor all, would produce ornament. ‘Here,” he says, making a smudge
with his pen (Figure 2.6a), ‘you have contrast: but it isn’t ornament’;
‘here—1,2, 3,4, 5, 6... ‘you have series: but it isn’t ornament; and
here,’ sketching a little stick-man (Figure 2.6b), ‘you have symmetry;
but it isn’t ornament.” His friend replies, “Your materials were not
ornament because you did not apply them. I send them to you back,
made up into a choice sporting neckerchief (Figure 2.6¢): each figure

is revolved on two axes, the whole opposed in contrasting series.’

Bk 8 SO 8 BB R
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Ruskin comes back: ‘Like all the people I have ever known who have
your power of design, you are entirely unconscious of the essential

laws by which you work, and confuse other people by telling them that
the design depends on symmetry and series, when in fact, it depends
entirely on your own sense and judgement.’ Ruskin then argues that the
designer would be best quit of the ‘notion of formal symmetry’.

In a somewhat symmetrical way we have turned full circle. We started
with Viollet-le-Duc’s criticism of formal symmetry as applied by
academic architects of his day, we then saw the growth of the idea of
symmetry in various sciences and Viollet-le-Duc’s understanding of this
as a principe underlying appearances, and now here we have Ruskin im-
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8 J, L. Martin, Ben Nicholson, and N. Gabo, eds., Circle; International Review of Con-
structive Arts, New York, E. Weyhe, 1938, pp. 1 19-23.

patient with natural science, playing with the outward forms of crystals
like an innocent schoolgirl, and airily dismissing symmetry as a ‘sign of
utterly bad, hopeless and base work’. Ruskin’s stigma on formal sym-
metry became a battle cry of protagonists and polemicists of the Modern
Movement in architecture, notably members of the Dutch De Stijl
group, some theorists at the Bauhaus, and the Russian Constructivists.
But it could be said that those who were the most successful innovators
of architectural form, in particular Le Corbusier and Frank Lloyd
Wright, were those who most understood symmetry as an abstract idea,
Viollet-le-Duc’s principe. Le Corbusier and Wright even bring new life
to formal symmetry (Figure 2.7) in many of their projects.

Symmetry in the modern sense of the word was first made explicit to
architects by the English crystallographer J. D. Bernal in an article ‘Art
and the Scientist’ in Circle: International Review of Constructive Art,
1938.
“The artist has discovered by intuition and practice many of the
stages of this geometrical art. Take for example symmetry.
Classical art knew only the simplest bilateral symmetry. Modern
art, on the other hand, whilst ostensibly rejecting symmetry
altogether is effectively reintroducing it in more complex forms.
These forms have been known, but outside the classical tradition,
particularly in the art of savage races, where the sense of thythm
is far more highly developed. The basic concepts of the three-
dimensional symmetry are those of rotation, such as the sym-
metry of a flower; of inversion as in the difference between the
right-hand and the left-hand; and the combination of these with
each other and with direct movements in space. This can be done
only in a limited number of ways: 230 for three dimensions, 17
for two, but this is only for regular figures. By altering the scale a
far larger number of internal harmonies, depending essentially
on symmetry, can be introduced. Some of the more abstract
_artists have produced intuitively many of these complex rhythms.
Architecture in particular gives great opportunities for sym-
metrical rhythms.’®

Ruskin’s neckerchief displays each of the symmetry concepts mentioned
by Bernal. The blobs and number series are handed or reflected, these
rows are then rotated around the four sides of the scarf, and finally the
stick-man motif is repeated or translated. The proof that the seventeen

Figure 2.7

The sparkling poché of
the Darwin D. Martin
House, Buffalo, New
York, 1904, demon-
strates Frank Lloyd
Wright’s mastery over
the Beaux Arts tradition
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9 Hermann Weyl. Symmetry, Princeton University Press, 1952, pp. 103-4.
10 For illustrations see Chapter 3, Figures 3.8 to 3.12.

11 For a clear introduction see Max Jeger, Transformation Geometry, London, Allen and
Unwin, 1966, Our treatment, however, follows H. S. M. Coxeter’s excellent Introduction
to Geometry, New York, Wiley, 1961.

groups of symmetry in the plane exhaust all possibilities was carried out
in 1891 by E. S. Fedorov in a paper on crystal symmetry. However,
Egyptian artists had intuitively discovered all seventeen groups.
Hermann Weyl, the distinguished mathematician, in his excellent
lectures, Symmetry,® says
‘One can hardly overestimate the depth of geometric imagination
and inventiveness reflected in these patterns. Their construction
is far from being mathematically trivial. The art of ornament
contains in implicit form the oldest piece of higher mathematics
known to us. To be sure the conceptual means for a complete
abstract formulation of the underlying problem, namely the
mathematical notion of a group of transformations, was not
provided before the nineteenth century; and only on this basis
is one able to prove that the 17 symmetries already implicitly
known to the Egyptian craftsman exhaust all possibilities.’*

Let us now look closely at the mathematical idea of symmetry before
returning to its application in environmental design.'* An isometry
which leaves a figure invariant is called a symmetry operation. In order
to list the various symmetry groups we need to study the different iso-
metries of the plane: recall that these are mappings which preserve
length. Since a plane may be defined by any three points in it we lose no
generality by characterizing it by a triangle 4BC.

Now if we draw this triangle onto tracing paper and imagine that our
tracing is actually in the same plane as A BC and not on a separate sheet
we will have mapped the identity. Call the traced triangle 4’B’'C’ so that
A—>A' = A, B—> B' = B, C— C’ = Cexpresses the identity relation.
Now move the tracing paper but in such a way as to keep the like sides
of the triangle parallel to each other. In the new mapping A — A’ 7~ 4
and so on and AB s parallel to A'B’. This kind of mapping is a trans-
lation. If we move our tracing anywhere ‘in’ the plane of the original
triangle 4 BC so that the sides of A’B’C’ are respectively parallel to it we
have a translation. Clearly we can arrive at any particular position
through any number of zigzags and shuffles, but for the moment we are
barred from spinning the tracing paper in any way. The straight lines
AA', BB', CC’ will always be parallel and of the same length. We say
that in any translation the vectors AA', BB’ and CC' are all equal. A
translation is determined by the vector leading from an origin 4 toa
terminus A’

Figure 2.9

Figure 2.10

A’ C’

Let us translate 4BC to a new position 4;B;C; and call this trans-
lation T;. Now from this position translate the triangle to another
position 4,B;C, and call this move T,. It is apparent that we could
have missed out the intermediate moves T, and T, and could have
gone directly from the original position to 4,B;C,. Let us call

the translation that does this T (the subscripts are just little tags to
distinguish one translation from another: we could use any mark we
like to do this but usually it is sensible to use some sort of system).

B

A B,

If we write T, . T, to mean first do operation T, and then T,, we see that
the product of two translations is the same as a third:

Tg.T1=T3. ;.\:2

=

It happens to be true that we could have done T, first and then T; and
still end up in the position given by the single translation T;. Thus

T e =T —=T,. T
This isn’t always so with other kinds of operations. For example if ‘A’ is
‘putting our socks on’, and ‘B’ is ‘slipping on our shoes’ we may write
B. A for the combined operation, but A . B will gain us some odd looks
when people see us wearing our socks over our shoes. We say trans- §
lations are commutative: the puttings on of shoes and socks are not.

43



Closure:

Associative:

Identity:

12 See particularly Georges Papy’s excellent introduction Groups, London, Macmillan,
1964. Also for fully programmed self-instruction, see Boyd Earl, Groups and Fields, New
York, McGraw-Hill, 1963.

Further, if we make three translations T, T,, T, in sequence it will be
noted that the resultant translation is the same whether we do T, and T,
first and then T, or T, and T first and then T;. This may be written
symbolically as

Ts. (T,. T,) =(T.Ty) . Ty,

and we say that translations are associative. Finally it is clear that if our
first ‘translation’ leaves 4’B’C’ coincident with 4 BC we have the identity
translation which we call I and we can write

TH=T%

since it makes no difference whether we perform the identity operation
or not. Furthermore if we bring the triangle back to 4 BC after first
translating it T by a translation in the reverse direction which we label
T- we shall have precisely what I maps, namely the identity, thus:

e
We call T- the inverse of T.
We have dealt with this at length to demonstrate the properties of what
mathematicians call a group,2 for it is within the context of the group
concept that they define symmetry. What are these properties 7 A
system consisting of a set of elements G = (@, b, c...) and an operation
between any two elements called their composition and marked by some
symbol, say T, is a group, providing four rules or axioms are satisfied.
For any two elements a, b € G there exists one element ¢ € G such that
atb=c.
Foranya,b,ceG
(@td)yte=at®to).

There is an element i € G such that forallae G

ati=a.

Figure 2.11

Inverse:

Commutativity:

For each element a € G and for each identity element i there is an
element ! € G such that

atal=i,

Now if we replace G by a set of translations 7' ={T;, T, Ts,... } in the
plane and use the symbol . in place of 1, calling the composition
‘product’, we see that translations obey these four axioms, thus forming
a group with I as the identity. The same algebraic structure may appear
in many different guises, with varying elements and compositions: the
group structure is one of the most fundamental in mathematics. -

Translations, however, also satisfy one more condition: the property of
commutativity. This implies that going from T; to T, also implies going
from T, to T;. Such a group is distinguished from those that do not
commute by the adjective ‘Abelian’ after the Norwegian mathematician
N. H. Abel. Translations, then, form an Abelian group. If Gis an Abelian
group, a fifth axiom holds.

For any two elements a, b € G
atb=bta.

To return to our triangle 4BC and its tracing A'B'C’. Place A'B’'C’ in
the identity position coincident with 4 BC. Now take a pin and stick it
through the tracing at random. We are no longer able to translate
A’B'C’, but we may spin it about the pin to a position 4, B;C;. Such

a mapping is called a rotation (Figure 2.11). Take another pin and fix
another point, Remove the first pin and spin A'B’C’ about the new
centre of rotation. The new position 4, B;C; has been determined by
first spinning the triangle about a centre of rotation 0,, and then about
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Figure 2.12
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a second centre O,. Call the first spin, through the angle (£) CO, C., S,
and the second through'/ C; O, C,, S,. Then it can be shown that
rotations form a group, but unlike translations itis not Abelian.

In general

S]_.Sg#Sg.sl- T

We can prove this as follows. It is obvious that the rotation S; lc.aavcs:O1
unchanged:

S,(0,) = 0;.
Thus when we operate S, we see that
S;.S1(0;,) =84(0)).
But
S, .S8,(0,) =S;.(Sx(0,))

and since S, moves all points other than O, and in particular the point
S,(0,) the two mappings of 0, differ. Thus the rotation group is non-
commutative.

All motion in a plane of this kind is either a translation or rotation.
Indeed if we accept that a translation is a rotation through a zero angle
about a suitable point at infinity we may say that every proper isometry
of a plane is a rotation. The proof of this assertion is simple. Drop the
tracing paper at random onto the sheet with ABC onit. We will have
something like the situation above, providing the tracing paper does not
turn over as it is dropped (that would be improper).

Figure 2.13

LEFLECTr oW

Join A to A’ and B to B’ and construct their perpendicular bisectors
meeting in O. Draw in the lines 04, 04’, OB, OB’, and OC, OC'. By
definition 04 = 0A’, OB = OB’ and, since by isometry we have

AB = A'B', triangles AOB and A'OB’ are congruent, thus / AOB

= / A’OB'.Byadding / BOA’ to each we see that / 404’

= / BOB'. Let us call this angle 6. A rotation § about O carries 4B
into A’B’. Now, / OAB -+ / BAC = / OA'B + / B'A’C' by virtue
of these congruences, and as 04 = 04’ and AC = A'C’ we prove that
triangle 0AC and OA4’'C’ are congruent. It follows that OC = OC" and
/ COC' = 6. Thus the same rotation maps C onto C’ which proves the
assertion that every proper isometry of the plane is a rotation. The
construction used in this proof is sufficient to determine any centre of
rotation for such an isometry unless it degenerates into a translation.

If our tracing paper had turned over as we dropped it the motion would
be described as improper. It is improper because we cannot change the
handedness of our flat triangle without removing it from its two-
dimensional world into the three-dimensional where we can turn it over
and then put it back again as if nothing had happened. Since we are in

a three-dimensional world it may seem perfectly reasonable to do this,
but an analogy in three dimensions will make it obvious how improper
the motion is. Occasionally we read of huge surpluses of army boots,
not pairs, but boots just for the left foot, or right. To convert, say, a pile
of left-footed boots into pairs would test the most imaginative quarter-
master to his limit. He would need to dispatch half the pile to a desti-
nation out of this world and into four dimensions. There he would
instruct whom? or what? to turn the boots over and to send them back to
earth. Assuming that the boots survived the trip, the quartermaster
would be in possession of a pile of matching pairs.

Nevertheless, taking our piece of tracing paper and turning it over, what
do we get ? If we hold our tracing so that the original triangle ABC and
our copy A'B'C’ are coincident (identity), and then fold it over along any
line we choose, we will have reflected the triangle along the line (Figure
2.13). Observe that, whereas we named the triangle ABCin aclockwise
direction, its image is now described in an anti-clockwise manner,
C'B'A’. Now join A to A’, Bto B’ and Cto C’ with ruled lines. Note that
they all cross the fold at right angles to it. Keeping the rest of the tracing
paper firmly held, unfold the tracing so that A'B'C' is again coincident
with ABC. It will be immediately evident that the lines 44’, BB and
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Figure 2.14
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CC’ are bisected by the line of the fold. This is precisely analogous to
reflection in a mirror where the image X" of an object Xis‘found’ ata
point on the perpendicular to the plane of the mirror from X and ata
distance equally ‘behind’ the mirror as Xis in front. For this reason the
fold is often referred to as the mirror.

If we do not hold firmly to the tracing paper, and we merely turn it over
haphazardly we obtain a glide reflection. The reason for this name
becomes clear when we draw the lines A4’ ,BB’ and CC', join their
midpoints together in a straight line, and fold the tracing back along
this line. Run a pencil line against the edge of the fold and then glide
the tracing paper along it until the two triangles are coincident. Un-
folding the tracing without moving its position gives us a reflection as
before, but to get the image of the triangle back to where it was when we
originally threw it down, it is necessary to glide the fold of the tracing
paper along the mirror plane: hence the name ‘glide reflection’ (Figure
2.14). An improper, or opposite symmetry, is either a reflection or a glide
reflection. Such an isometry reverses sense, that is it turns left-hand
figures into right-handed ones, and vice versa. Now, a translation is an
isometry which leaves no point the same —we say it has no invariant
point (although it is sometimes convenient to say that it leaves a point at
infinity invariant); a rotation, as we have seen, is an isometry leaving:
one point invariant — the centre of rotation; while a reflection is an
isometry which leaves one line (or plane), called its mirror, invariant.

If an isometry has more than one invariant point, it must be either the
identity (all points in the plane are invariant) or a reflection. A glide
reflection, like a translation, has no invariant points. . -

As we have seen earlier with translations and rotations, when two
operations follow one another we speak of their produet. What then

is the product of two reflections ? One reflection ‘hands’ a set of points
from left to right, and a second will ‘hand’ it back again so that the
product is certainly a proper isometry. Furthermore if the two reflecting
lines intersect in a point, O, it is easily shown that this isometryisa
rotation about O through twice the angle between them (Figure 2.15).
If OR, and OR; are the two reflecting lines and P; is the image ofa
point Pin OR,, and P, is the image of P, in OR, we have2 /. R,0P,

— / POP,and?2 / P,OR, = / P,0OP;5s0 that, adding,2 / R; OR,
— / POP,. Since R,R, is aclockwise rotation, R;R,is the corresponding

Figure 2.15

o

anti-cl9ckwise rotation. Remembering that R;~* stands for the inverse
opex:atlon to Ry, that is, whereas the latter takes P to P,, the former
carries P, back again to P, we see that

R,R; =R,7'R;7 = (R;R,)?

which is the same as R, R, if the two mirrors are at right angles to one
another in which case (R;R,)? = L. Note that (R;R,)~* =R, 'R;~*and
not R,~R,~*. We put our socks on first and then our shoes, but we
cannot take our socks off first before removing our shoes. If R;R, =1
then the two mirrors are the same, but if the two mirrors are parallel
then R, R, is a degenerate rotation, or translation. This is familiar in,
rooms where two parallel walls are mirrored and we see ourselves
disappearing into the distance, back to back, front to front, ad infinitum.
TI.Je first image in a mirror m, is Ry, this is then reflected in a parallel
mirror m, to become R,R; behind us, this in turn is reflected in m, to
become R, R,R, before us, then RyR, RyRy, Ry R,R Ry R, and so on.

At the same time our image is reflected behind us in m,. This image R,

is then reflected in m, to become R, R, so that we see our back. Then the
sequence continues as before, RyR; R,, R R,R; R, and so on. The images
may be divided into two sets: those in mirror m, in front of us, and those
in m, behind. The sequence of images may be expressed as

my: Ry, RiRs (RiRDR,..., (RiRD™ (RyRD)"R;, 2.

my: Ry, RoRy, (RzR)Rs,..., (ReR)™, (R3R)"R,,... ‘

ms. my

R!Rl‘RSRl. _ Rle. I R1 RleRl

ReR\R; R, RR,

Figure 2.16
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Figure 2.17
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but we know that R,R, is a translation (rotation through 0°) so that if
R,R, = Twehave R,R;, = R, 'R~ = (R;Ry)* =T 'and TR,
= (R,"'R, )R, = R, and we may rewrite the sequences more simply as

my: Ry, T,TRy,...,T", T"R,
mg: T-1Ry, T, T-1Ry,.... T, T-"R,

showing that the double mirrors produce proper isometries — the
translations — and improper — the reflections with translations. The -
product of reflections in two parallel mirrors is a translation through
twice the distance between the mirrors.

These statements are neatly visualized by taking a piece of tracing
paper and folding it along two parallel lines, call these m, and m1,.
Draw a triangle between m, and m, when the paper is unfolded, label

it I. Fold the paper about m, and trace the outline of I giving it the name
R,, now fold the paper about m,, trace I through and mark it R,. Next
fold about m, keeping the paper between the ‘mirrors’ flat on the table
all the time. Trace over the image of R, marking it Ry R,. Unfold and
crease along m, when the image R, will be seen. Trace R, and mark the
new drawing R,R,. Continue folding and unfolding along m; and m,
in order, marking each new tracing with an additional R, or R in front
of the name of the triangle being traced according to whether the fold
is m, or m,. Finally, unfold the tracing paper flat. The writing will be
back to front, but the system should be perfectly clear (Figure 2.17).

The triangles marked with an even number of R;s and R,s are seen to be
straight translations, T+", of through twice the distance between the
mirrors, and those with an odd number are translations, T£", of the

first reflection R;.

A similar exercise can be done with a piece of tracing paper folded along

" lines which intersect in one point at angles which are sub-multiples of

180°, such as 90°, 60°, and in general 180°/n. The images produced are
kaleidoscopic, for this is the basic mechanism of this fascinating toy.
To the mathematician, point groups generated by reflections of this
kind are known as dihedral because of their bilateral symmetry about
the mirror planes.

Figure 2.18

T%le group generated by three equiangular mirrors, n = 3, is Ds, by four,
with n =4, D, and so on. D, is the dihedral group formed by two
perpendicular mirrors # = 2, and, for n = 1, D, is a straight reflection
ina li.ne. Take some tracing paper folded along two mutually per-
pendicular lines, m, and m,, and draw a triangle in one quadrant. Call

it 1. .Now fold about m, and trace a triangle R, over I. Unfold and crease
again along m,. Trace over / calling it R, and over R, naming it RyR;.
Unfold and repeat the process taking m, first and then m, (Figure 2.18).

ny

R,

ny

Note that we may now call the triangle R, R, equally well R,R;. As we
have seen, since R; = R;~*and R, = R,~! we may also write R;R;
=R, 1R, = (R,R,)~1. These three equations, which may be expressed

R2=Rz2=RR)* =1,

constitute what is known as the abstract definition of the symmetry
group D,. Similar definitions may be given for D,;:

R12 = Rzz = (R1Rz)'l =L 3

Looking again at our unfolded sheet we see that the triangles in diago-
nally opposite quadrants are proper isometries and can be effected by
means of a rotation about the intersection of m, and m, through 180°
(Figure 2.19). Let us call this rotation H, in view of the fact thatitis a
halfturn. Then we see that H = R;R, = R,R, and R, = HR; so that
the four symmetry positions in D, are I, R,, H and HR;. In general, the
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Figure 2.19
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rotation, R,R, = S, is through 360°/n for D,.. D, may be expressed
entirely as products of R, and S:

Rl! Ss SRI’ S23"-, Sn_lRl’ "= I'

Those isometries with S only are proper, those with Rl' are impropex:.
The sequence S, S2,..., S* = I gives the proper isqmetrles Qf the cyclxc.
group C,. The product of two rotations St and S’ from this sequence 1s
Si+i, Butif i + jis greater than n we have to subtract n to find put wh‘at
position S#+ refers to. Thisis a simple example of the clock arithmetic,
modulo n, which we discussed in Chapter 1. Thus,

SiSi — Sli+)mod n

and in the case of our example D, we see that H?mod? — H° =1,
H3mod2 — H, H4mod2 = H® =T and so on.

The glide reflection G is, as we have seen, composed of a reflection and
a translation. They evidently commute and we have

G =RT =TR.

But a translation is also the product of two halfturns H,H,, or, as we
have seen with the parallel mirrors, the product of two parallel reflec-
tions R;R,. A glide reflection may be expressed as the product of three
reflections RR, R (two perpendicular to the third), or of one halftu'rn
and a reflection or a reflection and a halfturn. The latter statc?ment is
illustrated by Figure 2.20. We have a glide axis g, gnd two mirrors m;
and m, perpendicular to g. The points of intersection of m an.d my
with g we call O, and O,. Itis clear that the half.turn H,is cqulvallent to
R,R or RR, where R is reflection in the glide axis g, and that H, is the
same as R,R or RR,. But

T = H]_HZ = RlRRR2 == R1R2

Figure 2.20
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since R? = L. The glide reflection G is thus defined by

G =RT =RR,R, =H,R,
= TR — R1R2R =S R1H2.

To summarize: we have been discussing transformations in one-to-one
correspondence for the whole plane onto itself. Every point P maps onto
a unique point P’. An isometry is a special kind of transformation: it is
the transformation which preserves length. Isometries are of particular
interest to architects and designers. Given, for example, an L-shaped
room of fixed dimensions to be assembled with some other spaces it is
likely that the architect will use most of the isometries we have discussed.
He will certainly move the room around without changing its orientation
in an attempt to find a desirable place for it. By doing so he translates it,
T. He may rotate it, R, through an angle, particularly in a rectangular
assembly through a right angle or a halfturn, H. If this does not satisfy
his requirement he may ‘flip’ the room over to make it into a I'-shaped
room. He will have reflected’it, R, and as he moves this new isometry
into a suitable place he will be transforming his room by a glide reflec-
tion, G. These moves are, strictly speaking, symmetry operations with
respect to the configuration: such an operation refers to a specific
configuration — in our example the L-shaped room — and not the whole

plane. A symmetry operation is an isometry that transforms a figure
onto itself. t

In the plane there are two distinct kinds of isometry. Those that preserve
sense are called proper, those that are sense-reversing are said to be '
improper. Rotations, halfturns and translations are proper isometries:
reflections and glide reflections are improper. The two general isometries
are rotation and glide reflection, the others are special cases of these two.
A halfturn is a rotation through 180°, and a translation is a rotation
about a point at infinity. A reflection is the special case of a glide
reflection when there is no translation (or glide). Figures 2.21-2.25 show
each of the isometries and the constructions required to determine
centres of rotation or lines of reflection. One interesting pattern emerges
from this tabulation. If the isometry carries P; onto P, and we note the
arrangement of the midpoints M; of P;P,’ we see that with translations
and rotations there is no /ine which can be struck through the points M,
although in the case of the halfturn an infinite number of lines pass
through M; since all the midpoints are coincident and any number of
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lines may be drawn through a point. On the other hand, with reflections
and glide reflections the points M; all lie on one line — the mirror or glide
axis. When we look at the perpendiculars to P;P;’ through M, we find
that with rotations and halfturns the perpendiculars all pass through one
point and this is true for translations if we permit the convention that
parallel lines intersect in a point at infinity. But with reflections we find
that the perpendiculars all coincide along the mirror so that they are
coincident with an infinite number of points. This is not so with glide
reflections where the perpendiculars share o point in common. The
pattern of this emerges very clearly when we tabulate the results:

Proper Improper
Type of isometry - TS H G R
Midpoints collinear (number of lines) 0 o 1 1
Perpendiculars concurrent (number of points) 1 1 0 o
=
g
5 3
2 A
8 9 g .
o =
Prd g
g R T
3
21 3 &
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3 Symmetry groups in the plane

We are now in a position to enumerate the plane symmetry groups

which may be classed according to their translational structure. There

are three cases to be considered:
+ 1 no translations present, the two finite point groups;
IC 2 one translation present only, the seven frieze groups;
=1 3 more than one direction of translation, the seventeen wallpaper
groups.
Fejes T6th has described these in some detail,! but perhaps a more
approachable account is given by J. H. Cadwell in his book Topics in

Recreational Mathematics.? Here we shall not repeat the mathematical
discussion, but instead confine ourselves to illustrating the three classes

of plane symmetry groups and to commenting on their application in
architectural and environmental studies.

& In Figure 3.1 we illustrate the two planar point groups. These are the
only finite symmetry groups in the plane. The cyclic group has sense, or

direction of spin, although this disappears if the figure itself, which is

the subject of the symmetry operation, is bilaterally symmetrical about

an axis through the centre of rotation. Properly speaking the group
should then be called dihedrali The outstanding mathematician,
Hermann Weyl, in his lectures on symmetry delivered at Princeton

University on the eve of his retirement from the Institute of Advanced
Studies in 1951, credited Leonardo da Vinci with the first tabulation of
all the possible finite groups of rotation (proper and improper), namely

the cyclic group  Ci, Gy, Ca,.o5 G
and the dihedral group Dy, Dg, Ds,...,; Dy,

where 1 is the period of the group, or the number of 360°/n rotations

required to complete a full revolution. At one time, Leonardo had been

engaged on a systematic study of the possible symmetries of a central

building and how to attach chapels and niches without destroying the
symmetry of the nucleus. In fact, like his architectural contemporaries,

Leonardo essentially developed the dihedral group of symmetries for

these proposals, avoiding the skewed ‘asymmetry’ of the cyclic group.

1 Fejes Toth. Regular Figures, Oxford, Pergamon Press, 1964.

2 J. H. Cadwell. Topics in Recreational Mathematics, Cambridge University Press, 1966,

pp. 112-29. For a more technical discussion see Paul B. Yale, Geometry and Symmetry,
San Francisco, Holden-Day, 1968.

Figure 3.1

The two point groups:
the cyclic group, C,,
consists of rotations
about a single point, O,
through 27/n, while the
dihedral group, D, in-

cludes a reflection
through O.

. b
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3 This design is reproduced in A. E. Popham, The Drawings of Leonardo da Vinci, London,
The Reprint Society, 1952, p. 303.

41 eone Battista Alberti. Ten Books on Architecture, facsimile of the Leoni edition by
Joseph Rykwert, London, Tiranti, 1955, p. 138.

5 For a discussion of the work of Ledoux see Emil Kaufmann, ‘Three Revolutionary
Architects, Boulleé, Ledoux, and Lequeu’ in Transactions of the American Philosophical
Society, vol. 42, part 3, 1952, pp. 431-564.

Nevertheless, there is a fascinating sketch by Leonardo for an ‘auto-
matic crossbow battery’,? driven by a team of men on a huge treadmill
which is based on the cyclic group Cyg, and his drawings show that he
frequently made use of skew gears, C,, in his ingenious engineering
inventions.

Leone Battista Alberti writing in his Ten Books on Architecture, first

published in Florence in 1485, describes the ideal plan forms of temples:
‘It is manifest that Nature delights principally in round figures,
since we find that most things which are generated, made or
directed by Nature are round.... We find too that Nature is
sometimes delighted with figures of six sides; for bees, hornets,
and all other kinds of wasps have learnt no other figure for
building the cells in their hives, but the hexagon.... The polygons
used by the Ancients were either of six, eight or sometimes ten
sides.’*

He then gives detailed instructions on how to set out these regular

polygons (Dg, Dg, D1o)-

Two architects at the end of the eighteenth century made interesting use
of the dihedral group in their works. One was the Frenchman, Claude-
Nicolas Ledoux,® who narrowly escaping the guillotine — or ‘I’hache
nationale’, as he termed it — managed at his own expense to produce a
volume of hislife’s work in 1804 under the title L’ Architecture Considérée
sous le Rapport de I’ Art, des Meurs et de la Législation. It is a very remark-
able book and the plates are beautiful to contemplate. Again there is a
kind of taxonomic passion about the work which we have already
remarked upon in respect of his fellow “Napoleonic’ contemporaries.

In Figure 3.2a—¢ we illustrate five of his buildings and projects which are
based with minor exceptions of detail on the dihedral groups D;, D,

D,, D, and Dy,. The other architect we might mention is the Englishman
Sir John Soane. As Gold Medallist of the Royal Academy he produced
two designs in 1778-9 based on D; for his distinguished patron the Lord
Bishop of Derry, Earl of Bristol. These were for a ‘Residence of a
Canine Family in Ancient Times and Modern Times’. Soane was
obviously enthusiastic about this proposal for, in 1796, we find him
adapting his three-sided dog kennel for use as a ‘Sepulchral Church’ by
another client (Figure 3.2f-g). The original concept seems to have come
from an important book in the history of architectural ideas : Marc-

Figure 3.2

Examples of point groups
in architectural plans:

a, Montmorency

Palace, D,

b, De Witt House, D,

¢, Inn St. Marceau, D,
d, Barriére de Picpus, D,
e, House of Entertain-
ment (circular colonnade
and pavilions), D, ,

all projects and buildings
by Claude-Nicolas
Ledoux:

f, Sepulchral Church, D
g, Kennels, D,

both designs by Sir John
Soane:

and projects and buil-
dings by Frank Lloyd
Wright

h, Greek Orthodox
Temple, C,

i, St Mark’s Apartment
Tower, C,

j, Huntingdon Hartford
Clubhouse, Dg

k, Suntop Homes, C,

1, Daphne Mortuary, D

5
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6 From Arthur T. Bolton, The Works of Sir John Soane, F.R.S.,F.S.A.,R.A.( 753-1837),
London, The Sir John Soane Museum Publication, no. 8, (undated, c. 1924).

7 James Fergusson. The Illustrated Handbook of Architecture, London, John Murray,
1859, p. 608.

8 The English Renaissance architectural theorist, Sir Henry Wootton, condemned
pentagons except in military (sic) architecture. He wrote that as pentagonal designs ‘do
more aim at rarity than commodity, so for my part I had rather admire than commend
them’. From Sir Henry Wootton, Elements of Architecture, facsimile of 1624 edition
published in London, 1903.

Antoine Laugier’s Essai sur | » Architecture of 1752. In this Abbé Laugier
describes a form for a church:
‘In the triangle I inscribe a circle, which gives me the plan of the
dome, which I carry up from the ground. At the three angles I
construct three rotundas, which give me three sanctuaries, where
1 place three altars. On each of the three faces I open a door-way
in the centre, so as to have three entrances, each facing an altar.’®

The need to repeat functional elements to justify the threefold sym-
metry appears absurd, and such buildings are rarely, if ever, built.
While the plans of buildings based on the point groups are often pretty,
they are not always of ‘the sternest utility’. As Fergusson remarked of a
triangular church at Planes in Provence: ‘As a constructive puzzle it is
curious, but it is doubtful how far any legitimate use could be made of

such a capriccio.””

In a rare instance of the use of Dsin architecture, Frank Lloyd Wright
projected a design for a mortuary in San Francisco on strictly functional
grounds.® The client’s brief was for five chapels of rest. Here there was a
justifiable reason for having five entrances in order that mourners from
different groups should not meet. The points symmetry made it possible
for each chapel to share a single, central cremation core which served

them (Figure 3.21).

Frank Lloyd Wright also used other point groups in his work. Figure
3.2k illustrates the plan for Suntop Homes, built near Philadelphia, in
which four identical houses are rotated through 90° to one another.
The symmetry, Cy, is not unreasonable here, since each house is itself
planned sensibly within its own area: of course, orientation to the sun
differs for each house but with proper siting no house need be without
east and west light. In a project for Huntingdon Hartford, Wright
essentially used the dihedral group D, as a base for his design of the
clubhouse for a luxury country club (Figure 3.2j). Three circular, bowl-
like lounges and bars were to have been cantilevered out from a tri-
angular base containing lifts and staircases. But overall, the exuberance
of this project could not be bound, except in part, to the rigours of
symmetry. Housing again provided a reason for cyclic symmetry ina
project, in 1929, for apartment buildings in the Bouwerie, New York.
Internally each dwelling is virtually identical (Figure 3.2i). However, a
full C, symmetry as in the Suntop Homes would have meant four lifts

Figure 3.3
The seven frieze groups:

F, ,translation along one
axis

F1, reflection in the axis

F3, reflection perpendi-
cular to the axis

F?$, reflection and glide
translation

F,, halfturn
F}, reflection in the axis

F3, glide reflection, or
reflection in pairs of axes
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Concrete block, D, for
La Miniatura by Frank

Figure 3.5 opposite
Column and balcony
detail for La Miniatura

9 From Le Corbusier, My Work, translated by James Palmes, London, The Architectural
Press, 1960, p. 24.

10 From Frank Lloyd Wright, An Autobiography, pp. 347-8.

11 From Le Corbusier, La Ville Radieuse, Paris, Editions Vincent Fréal et Cie, 1964, p. 283.

and four fire-escapes. Clearly these elements can be shared and with two
of each the symmetry reduces to Cs. We shall return towards the end of
the chapter to Wright’s remarkable development of this early project

in later schemes. Finally, in his Greek Orthodox Church in Madison,
Wright sets a concrete bowl upon a Greek cross structure (Figure 3.2h)
Although the structural system is based on D,, the plan itself reduces to
D, with one dominant entrance. Actually, the plan has no dihedral sym-
metry —in a strict sense. As in the Byzantine church of San Vitale at
Ravenna (which is structurally octagonal, D,) the main altar does not
lie on the same axis as the entrance loggia.

The next class of symmetries we illustrate are the frieze groups (Figure
3.3). There are seven distinct groups: there are four based on translation
and reflection called F;, F1, F2and F3, and three which permit half-
turns called F,, F3, F2. F, is straight translation alongaline, Fi
involves reflection in the line, and F’ 2 reflectionin a pair of mirrors at.
right angles to it; The group F %1s a glide reflection along the line. The
second set consists of F, with a halfturn about the line, F; a halfturn
and a reflection in the line, and F3 a halfturn and reflections in two

mirrors at right angles to it. .

The adjective ‘frieze’ naturally arises from architectural precedent.
Owen Jones’s Grammar of Ornament has many examples from Egyptian
and Greek architecture onwards. Ornament as decoration was rejected
by many architects in the first half of the twentieth century. Le Corbusier
writing about Jones’s book said: ‘Decoration is a debatable topic, but
ornament pure and simple is a thing of significance; itis a synthesis, the
result of putting together.”® While Frank Lloyd Wright, echoing Jones’s
aphorism ‘Construction should be decorated. Decoration should never
be purposely constructed’} speaks of ‘ornament meaning not only sur-
face qualified by human imagination but imagination giving natural
pattern to structure.... Integral ornament is simply structure-pattern.
made visibly articulate’.}* Wright goes on to say that what he calls
“integral ornament’ is f ounded upon the same organic simplicities

as Beethoven’s Fifth Symphony, “that amazing revolution in tumult and
splendour built on four tones based upon a rhythm a child could play
on the piano with one finger. Supreme imagination reared the four
repeated tones, simple rhythms, into a great symphonic poem that is
probably the noblest thought-built edifice in the world. And Architec-
ture is like Music in this capacity for the symphony’. With this, Le
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Corbusier agrees, as we see from his stirring statement on one of his
grandest urban schemes, the development of the left bank of the Schelde
a’f Antwerp: ‘Il faut insister sur ce fait que la diversité la plus totale
régnera dans cette ville grdce aux infinies combinaisons des éléments
szmpiles q'ui la. constituent... celui des vastes ensembles architecturaux
conjugués suivant une symphonie croissante.’!* The problem about this
kind of analogy at the city scale may be summed up by a question:
‘Who wants to live in someone’s symphony every day ?’ .

In 1921 Frank Lloyd Wright built La Miniatura in Pasadena for

Mrs George Millard. The house is built astride a small ravine between
eucalyptus trees. It is constructed of concrete blocks reinforced with
steel. Th.e blocks were cast in wooden moulds and they are impressed
by a design based on D, (Figure 3.4). The columns inside the house
which support the balcony in the double height living-room are clad in
half-blocks arranged as in the frieze group Fj although, more properly
the symmetries of each block make this into £ (F iguré 3.5). The frieze,
alopg the bottom edge of the balcony, oddly enough, does not represent
a frieze group. This is so, since a half block on the top row is related to
one on 1ihe bottom by a translation at 90° to the axis of the frieze, and no
translaqons are permitted at an angle to the axis. Indeed this add’itional
translation means that this particular frieze is a ‘fragment’ of the third
c}ass _of symmetry groups — the wallpaper groups. However, by con-
sidering two half blocks — the top one over the bottom — as our unit
element, the border can be read as frieze group F;, or F2 because of the
Teﬂegted symmetry of each block. It seems reasonable to suppose.that
it is, in part, the ambiguity of multiple readings that makes pattern and
symmetry sc fascinating.

There are many examples of frieze group symmetries in mass housing
where identical units are assembled into apartment buildings, terraces
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Figure 3.6

Housing projects by Le
Corbusier:

a, terrace at Pessac, Fy

b, semi-detached row at
Pessac, F}

¢, Apartments for Artists
1928/29, F?

d, terrace at Pessac, F}

12 Quoted from ‘Plan by Frank Llyod Wright’ in City Residential Land Development

Studies in Planning, edited by Alfred B. Yeomans, Chicago, City Club of Chicago, 1915,
@=D il P pp. 96-102.
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;l;d other arrangements. The individual units of Le. CorPusxer s terrlaced
and row housing at Pessac have already been described in Chap’u?a .

In Figures 3.6a, band d we see that the bloock arrangements provi e:t .
examples of the frieze groups ¥, F anfi EA frequc?t arrangement is
illustrated by the F; pattern of the project for Artists Apartments,t .
Figure 3.6c, where individual apartments are reflected along a party wa

containing the services to kitchens and bathrooms.

Let us now look at the third class of plane symmetry groups. Thelset?.re
the wallpaper groups which are generated by more thfcm one translal 101;.
In two dimensions any two distinct vector‘s are sufficient to' determine "
third: this is analogous to the two coordinates (X, ») r'equ‘lred tfo specify
a point in a plane. In general, it follows tha:t any combmg’gon oT trags%
lations in a plane may be reduced to two distinct translations, 1 and T
Any symmetry group of the plane wil} then be l.aa.sed on tt-1e I_attz;;
generated by Ty’ T,/ where i and j are mt.egers (i,j € Z2). Wlth;n; *-
lattice the only possible periods of rotatlorfal-symmetry are 2, 3,4, 6.
This is known as the crystallographic restriction.

The proof is elegantly simple. Let P be a centre of rotation of period ;_,
that is the angle of rotation is 360°/n. Thfa remaining symmetry opefr
tions of the lattice transform P into infinitely many other centres 1?‘ .
rotation of the same period. Let 0 be the nearest centr?> toP. At fxr th
centre, P, is derived from Q by a rotation through 360°/n; and a fourth,

was the nearest point. If » = 6 then P and Q' coincide. If » = 5, how-
ever, Q' will be closer to P than Q which again is a contradiction.
Values of n = 4, 3, 2 are satisfactory. These angles — 60°, 90°, 120°, and
180° — are the bases of the wallpaper groups W, W,, W3, W,. The
wallpaper group W is arrived at by direct translation with no rotations.

We illustrate the seventeen possible groups in Figures 3.8 to 3.12. In
each case the unit cell, or element, of the pattern is delineated and the
symmetry operations indicated. Fejes Toth gives a full account of these
symmetry groups in his book Regular Figures.

In 1913 Frank Lloyd Wright submitted hors concours a proposal in a
competition for the development of a Chicago quarter-section (one-
quarter mile square). Wright developed most of the property along the
main perimeter roads as commercial buildings, making them
¢ “background” buildings... continuously banked against the
noisy city thoroughfare.... By thus drawing to one side all the
buildings of this nature into the location they would naturally
prefer, the greater mass of the subdivision is left quiet and clean...
left intact as a residence park, developed according to the
principle of the ““quadruple block plan”.... Each householder is
automatically protected from every other householder. He is the
only individual upon the entire side of his block. His utilities are
grouped to the rear with his neighbors’ utilities, and his yard,
front or rear, is privately his own. His windows all look upon
open vistas and upon no one’s unsightly necessities. His building
is in unconscious but necessary grouping with three of his
neighbors’, looking out upon harmonious groups of other
neighbors, no two of which would present to him the same
elevation even were they all cast in the same mould. A succession
of buildings of any given length by this arrangement presents the
aspect of well-grouped buildings in a park, of greater picturesque
variety than is possible where fagade follows facade.’*?
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Figure 3.13

Housing layout by Frank
Lloyd Wright exhibiting
W, and W3 patterns
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Our two examples of ‘quadruple block’ planning are, in essence,
examples of W, and W} - each element being a cluster of four houses

with point symmetry C, and D, respectively (Figure 3.13). As we have’

already mentioned, Frank Lloyd Wright’s concrete block frieze in La_

Miniatura properly belongs to W7, consisting as it does of a reflection
(the bilateral symmetry of the half block) and a translation not in the
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line of the mirror. On the other hand, the general wall treatment is Wi:
each square block having symmetry, D, (Figure 3.14). ' Figure 3.15

Le Corbusier’s project
for La Ville Radieuse

i (ZONING) |

{ » P 1Y
V R LA VILLE RADIEUSE

The project, in the late twenties, for La Ville Radieuse by Le Corbusier
illustrates a number of symmetry groups (Figure 3.15). In the manu-

facturing section, which consists of ateliers, or flatted factories, we have

an example of either W, or F, depending on our choice of unit (Figure

3.16). The particular form derives from the configuration of railway

sidings which enter and leave an outer loop atan angle of 45°. 1

The residential area, la ville verte, contains continuous terraces of
twelve-storey housing —an arrangement which Le Corbusier calls
lotissements & redents. Bach unité I’ habitation houses some 2700 inhabi-
tants who enjoy communal services as they mightina hotel and share
facilities such as créche, nursery and primary schools, tennis courts and

Figure 3.14
External wall treatment
of La Miniatura
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Figure 3.16

The industrial area of
La Ville Radieuseisa
fragment of W1

Figure 3.17

The central business
district of La Ville
Radieuse is an example
of the wallpaper group,
Wa

13 For Le Corbusier’s original description of the business district see his essay ‘The Street’
in Oeuvre Compléte 1910-1929, pp. 118-19.

14 From Werner M. Moser, ed., Frank Lloyd Wright,; Sechzig Jahre Lebendige Architektur,
‘Winterthur, Switzerland, Buchdruckerei Winterthur AG, 1952, p. 27.

swimming pools within their own lotissement. The autostrades are based
on a square grid 400 m X 400 m and are kept to the outside of the site,
leaving a large traffic-free park within. Le Corbusier gives six examples
of the many combinations which can be derived from a single architec-
tural motif — “‘une arabesque de redent susceptible d’assurer de grands
spectacles architecturaux.’ In these combinations there are examples of
W,, W3 and WZ, but Le Corbusier mixes fragments of these together in
his final composition. Note, however, that the north-east corner of /a
ville verte is a strict example of the wallpaper symmetry, W.

Finally, in the business section where cruciform towers are individually
set within their own motorway box, we have the group W, (Figure 3.17).
Each block is C,, and each tower within the block is D,. By using W,,

Le Corbusier maintains the neutrality of the square grid giving no
preference to one route direction over another. The whole business
section thus becomes a spectacular setting for one of those classic car
chases of the silent cinema — with Harold Lloyd clutching at spindle-
berry!? as he dangles over the side of the roof garden of a 60-storey-high
skyscraper, while below the Keystone Cops appear and disappear in a
spiralling maze of car parks and a helter-skelter of roads.

In 1939 Frank Lloyd Wright designed a project, the Crystal Heights
Hotel, to be sited at the acute-angled intersection of Connecticut and
Florida Avenues in Washington D.C. Werner Moser notes the essential
features of the scheme:
‘Clustered skyscraper group (application of the St Mark’s Tower
unit) containing a hotel, similar to 1930 project for Chicago with
its towers linked in a line. South of this group Wright leaves a
large open garden, enclosing it along the street contours with
recessed 4 storey row-buildings, containing shops, garages,
theatre and parking terraces on the flat roofs. The usual endless
and unarticulated succession of apartments has been successfully
avoided : Wright divided the whole block into many clearly
accentuated groups, each containing 12 living units [per floor].
In this way the big block receives a rhythmical texture (light and
shadow) on a comprehensible scale.’4

We have already illustrated the St Mark’s-in-the-Bouwerie Tower as an
example of the point group C,. It is of some interest to study this generic

form more closely. From 1929 until the end of his life, thirty years later,

79



Figure 3.18

Behind the apparent
romanticism of the
Crystal Heights hotel,
shops and theatre com-
plex by Frank Lloyd
Wright, lies a symmetri-
cal structure of great
simplicity

the ‘quad’ motif is one which recurs in numerous projqcts by Wright of
which only one was built — the Price Tower in Bartlesville, Oklahoma.
This sequence of variations provides us with the richest and most
sustained application of symmetry in architecture that we know of.

The elementary unit of St Mark’s Tower is an equilateral t_riangle.

W} turns this single triangle into the regular plane tesselation {3, 6}.

The Schlafli symbol {p, q} denotes a tesselation composed of q regular
p-gons about each vertex. There are just three regular tesselations of the
plane {6,3}, {4,4}, {3, 6}; thatis to say, the hexagonal, the square and
the triangular. In most of his buildings, Wright uses one or other of
these tesselations as a base. For example, in the Sundt House he §m1?10ys
the hexagonal grid together with the triangular grid which contains it,
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15 Quoted from the Guide to the Price Tower, Bartlesville, Oklahoma.

in the Life Magazine project he uses a square grid as he does, sur-
prisingly, as we see in Chapter 9, in the circular Jester House (Figure
1.13). For the tower, Wright describes his reasons for adopting the 60°-
unit system as follows:
‘The entire building is laid out on a 60° unit system. These units
or modules consist of 60° parallelograms 2 ft 6 in across and
2 ft 10§ in on a side. [The 2 ft 6 in dimension refers to the semi-
diameter of the 60° rhombus, that is the height of the equi-
lateral triangle which we take as the elementary unit in our
discussion.] All walls, partitions, etc., fall on unit lines or sub-
divisions thereof. The unit basis of construction is made ap-
parent in the lines inscribed in the floor slabs throughout the
building. In laying out a building on such a unit system, a unity
of design is achieved which would otherwise be unlikely; all
shapes and forms grow out of or are related to this basic fabric
as the pattern of a beautiful carpet grows from the warp and
woof of the weaver’s loom. In addition, the elimination of much
of the customary dimensions on the drawing avoids confusion
during construction since the unit system provides a constant
reference point for the location of all component parts. The
choice of the 60° unit system rather than the customary rectilinear
results from the facility in which space relationships are
coordinated in the former; not only does one area flow into and
relate more naturally to human freedom and usage, but, if
properly handled, the finished ensemble results in a much more
open and facile plan.’®
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Figure 3.19

The geometrical develop-
ment of the plans of an
apartment building for
St. Mark’s-in-the-
Bouwerie, New York, by
Frank Lloyd Wright, C,
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In St Mark’s Tower, Wright effectively takes a rectangular ‘corner’ of
the triangular grid — one edge coinciding with an axis of the tesselation,
the other at right angles bisecting a row of equilateral triangles (Figure
3.19a). This corner is then rotated through 90°, 180° and 270° about a
point 10 inches from the corner. As an isometry transformation this may
be represented by S,*, S¢% S,3, S,* = I where S isa rotation of period 4.
This rotation assembles the quadrants in pinwheel form (Figure 3.19b),
leaving a 10-inch space between the four quarters whose dimensions in
any given direction now clash irreconcilably : the perpendicular height
of the triangular unit to its side being 4/3 : 2. Wright, however, uses the
gap so made for the four internal vertical shafts of reinforced concrete
from which the slabs are cantilevered (Figure 3.20). This quintessential
plan for the whole series of projects is C,. But as we have already men-
tioned, in the St Mark’s project the four apartments share two elevators

Figure 3.20

The structural system of
the St. Mark’s apartment
building

anfl two escape stairs. This arrangement, together with a 10-inch trans-
lation to pull two of the quadrants yet further apart in order to increase
the width of the escape corridor from 30 to 40 inches, makes the final
symmetry of the floor plans of St Mark’s Tower C, (Figure 3.19c—d).

A year later Wright designed a project for grouped apartment towers in
Cl}lcago (Figure 3.21b). Here Wright takes the St Mark’s Tower plan
(Figure 3.21a) as his element. He then rotates the plan through a half-
turn, H. This produces a plan with six duplex dwellings and a good deal
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Figure 3.21

The generic plans of
building and projects by
Frank Lloyd Wright:

c

o A

a, the St. Mark’s-in-the-
Bouwerie apartment
building

b, the Chicago apart-
ments

¢, Crystal Heights hotel
and apartment complex;
and

d, the Price Tower

16 All these schemes are illustrated in The Drawings of Frank Lloyd Wright, edited by
Arthur Drexler, published for the Museum of Modern Art by Horizon Press, New York,
1962.

of redundancy in structure and fire-escapes. Wright removes two out of
each cluster of four concrete shafts and arranges that the two required
escape stairs back against one another in the centre of the building. The
final plan exhibits C, symmetry, as does the structure. This new unit is
then translated, T, along a line 30° to its main spine. The final plan
consists of five units I = T°, T*, T?, T3, T* linked together by double-
height garden balconies. The whole group may either be thought of as a
fragment of F;, or a lattice ‘row’ from W, which takes into account the
halfturn symmetry of each unit.

The Crystal Heights Hotel project, by all outward appearances, is a great
romantic composition, a cluster of towers arranged picturesquely to
provide a telling skyline. But underlying this seemingly free formis a
rigorous pattern-structure (Figure 3.21c): the culmination of the two
previous studies. Again Wright spins the original quadruple unit through
a halfturn, but this time the centre of rotation is even more eccentric

and the resulting unit is more elongated than in the Chicago apart-
ments. The plan now contains twelve hotel suites. The fire-escapes

are external and one of the structural shafts is removed from each
quadruple, thus making room for a central corridor. The symmetry of
the unit is again C,. This unit is essentially translated in two directions,
T, and T,. The development is 7372, T, 1, I = 1;°, 7%, T;2and 7,3 and

I =T,% T,!, T,2, T,® There are then four free-standing towers, princi-
pally for the staff, and one additional halfturn on 73! to form a triple
element. The third tower of this new unit is some six storeys higher than
the other towers. The units are linked to each other by glazed walkways.
The quintessential symmetry pattern, ignoring the free-standing towers
and the third tall tower, is again a fragment of W,, but this time along
both a ‘row’ and a ‘column’ of the lattice. This is undoubtedly one of
Wright’s finest works and one which, if it had been executed, would have
been a valuable exemplar for urban development elsewhere.

The building that did get built on this principle was, like its progenitor,
a single tower.® The Price Tower consists of a mixture of professional
offices and duplex apartments (Figure 3.21d). While the structural
symmetry C, is maintained, the requirement for six offices and one
apartment to each two floors reduces the symmetry to C; —essentially
no symmetry. This lack of rotational symmetry is clearly expressed in
the exterior treatment of the single stair tower, the vertical copper sun
blades for the apartments and the horizontal ones for the offices.
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17 From Owen Jones, The Grammar of Ornament, p. 156.

It seems clear to us that the two greatest f orm-makers of twentieth-
century architecture — Frank Lloyd Wright and Le Corbusier — were
able to innovate largely because of their appreciation and deep under-
standing of symmetry and pattern-structure. Both seemed to have taken
to heart Owen Jones’s proposition that ‘the principles discoverable in
the works of the past belong to us, not so the results. It is taking the end
for the means. No improvement can take place in the Art of the present
generation until all classes, artists, manufacturers, and the public, are
better educated in Art, and the existence of general principles is more
fully recognized’; and his advice that ‘if a student in the arts, earnest in
his search after knowledge, will only lay aside all temptation to indo-
lence, will examine for himself the arts of the past, compare them with
the works of nature, bend his mind to a thorough appreciation of the
principles which reign in each, he cannot fail to be a creator, and to
individualize new forms.’*?

Figure 4.1

window type:

4 Matrices and vectors

When in 1925 Le Corbusier designed his housing scheme at Pessac, near
Bordeaux, he was demonstrating the possibilities of mass produced
housing.! He designed a number of distinct types of dwelling, each built
of standardized elements. Le Corbusier used just three window sizes: a
quadruple square window, a double square and a single square one. At
some time he must have made what architects call a ‘window schedule’, -
a listing of the quantities of each window type in each building. This is "
most neatly done in the form of a table, or array of numbers, with the
house types across the top and the window types down the side (Figure
4.1). The array of numbers has the characteristic that we may not
change the positions of the numbers arbitrarily. Given a fixed order of
house types and window types, each number in the array clearly has a
fixed place. A matrix is a mapping of such an array onto an abstract
mathematical structure, a system of mathematical pigeon-holes.?

house type: 1 2 3 4

second floor

first floor
ground floor _— -
E[ 0 0 3 2
T« <« s
Tmma - o 2
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1 For an interesting comment on the history of this development see Philippe Boudon,
Pessac de Le Corbusier, Etude Socio-architecturale, 1927-1967, Paris, Dunod, 1969.

2 A good introduction to matrices is A. C. Aitken, Determinants and Matrices, Edinburgh,
Oliver and Boyd, 1939. A particularly lucid account is given by Jacob T. Schwartz,
Introduction to Matrices and Vectors, New York, McGraw-Hill, 1961. Geometrical appli-
cations are discussed in D. C. Murdoch, Analytic Geometry with an Introduction to Vectors
and Matrices, New York, Wiley, 1966.

The 3 X 4 matrix (three rows and four columns)

00 3 2
4 6 3 2
2 1 21

is a representation of the number of windows of type 1 (first row),
type 2 (second row), type 3 (third row) in each house: house type 1
(first column), house type 2 (second column) and so on. Thus the term
in the ith row and jth column represents the number of windows type /
in house type j. If we simply consider the windows in house type 1 we
can do this in one column of numbers

0
4
2

whichis a3 X 1 matrix, or column vector. On the other hand, if we want
to know how many windows of type 1 there are in each house type, we
can express this in a row of numbers

0 o0 3 2.

Thisisa 1 X 4 matrix, or row vector. A column vector with n terms in it
is said to have order n X 1, while a row vector with n terms has order

1 % n. Let us go back to the individual house plans for types 1 and 2
and write down the window type vectors for each floor. We have

House type 1 House type 2

Floor 1: 0] 'OT
I 1

L. \.0_

Floor2: 0] 0]
2 2

-1 - I—l_

Floor 3: '0'1 0]
1 3

[ 1] [ 0

On floors 1 and 2 the vectors for each house look the same, but they
differ for floor 3. We say that two vectors are equal only if their like-
positioned terms are equal. Clearly, this means that two vectors can only
be compared for equality if they have the same number of terms, if, in
fact, they have the same order. ’

House types 1 and 2 are actually two halves of a semi-detached house,
the first two floors of which are reflected. How many windows of each
type are there on floor 3 of house types 1 and 2? We add together all the

_windows of house type 1, then those of type 2 and finally type 3. This
illustrates vector addition:

o1 [0 ©0+07 o
LI+[3][=|0+3)]|=]|4]
1 0 (1+0) 1

T\yo vegtors of the same order may be added together by adding each
pair of like-positioned terms to form a third vector of the same order.

If we now add up the windows of each type on floor 2 of house types 1
and 2 we obtain

0 0 0+0) 0
21+(2[=|C+2)|=|4
1 1 1+1) 2

but as, when we have two identical objects, a, it is natural to write 2a
for a + a so with vectors we write

0 0 0
212(=|2]|+]2
1 1 1

which means, from our previous equation, that

0 0
212 =14
1 2
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This is an example of the multiplication of a vector by a scalar, or real
number, which entails multiplying every term in the vector by the |
scalar. But can we multiply two vectors together ?

Suppose the window types cost ¢;, ¢, ¢3 Tespectively. We can form a row
~ vector with these as elements, their sequence corresponding to that
which we have already used in the column vector of window types:

e € ¢l |
U

What is the total cost of windows in house type 1? The answer is, quite
simply, (¢; . 0 + ¢5. 4 + ¢5. 2), that s to say, it is the sum of the products
of each cost times the number of windows of each particular type. It
would be useful, in more complicated situations, to have a definition of
a vector product which gives us this result. We therefore define the

inner product of two vectors of orders 1 X nandn X 1 as the sum of the
product of terms in the row vector with their corresponding terms in the
column vector, thus for house type 1

[(,'1 CZ CS] 0 :(c1-0+c2’4+c3'1)
4
1

and for house type 2

[er ca e][0]=0(c1.04¢3.6+¢c5.1).
6
1

Vectors are usually denoted by small bold letters, a, b, c,.... Their
representative elements are a;, by, c;,..., where i takes the values 1, 2,...,
n and where n is the dimension of, or number of terms in, the vector.
Vectors may also be expressed [a;], [6.], [¢i],..., when we wish to draw
attention to the individual elements or components. By convention,
unless otherwise stated, a vector is assumed to be a column vector

a= g =[ai].

Addition (4);
Multiplication (.) :

Closure:

Commutative:

Associative:

Identity:

Inverse:

The row vector of these terms is called the transpose of a and is written

al =[a, a, a,) = [a;]”.

In future, in order to save space and since (aZ)7 is the same as a,
if we need to write the column vector out in full we will write it as
[a, a; .. a,]T ononeline.

We are now in a position to state some rules of vector algebra but
before we do so it is worth reminding ourselves of the operational rules
of ‘normal’ algebra. This algebra deals with real numbers and two
operations called addition (4) and multiplication ( . ) and it has been
given the general name number field by mathematicians. A general field
consists of a set of elements F = a, b, c,... and two compositions +, . , and
we write {F, +, . } to describe it. Recall that a group is a set of elements

with just one composition. But to be a field, certain rules of operation as
set out below must be satisfied.

For allelementsa, b ¢ F
a+beF
a.beF

a+b=b+a
a.b=b.a

at+®b+c)=(@+b+c
a.b.c)y=(a.b).c

For every a € Fthereis an element 0 € Fsuch that

a+0=04a=a.

For every a € Fthereis an element 1 € F, 1 =~ 0 such that
a.l=1.a=a.

For each a € Fthere is a unique element — g ¢ Fsuch that

a+(—a)=(—a)+a=0.

For each a € F, a 40, there is a unique element @~ € F such that
a.at=al.a=1.
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Distributive:

Equality:

Addition:

Closure:

-~

a.(b+c)y=a.bta.c
(@+b).c=a.ct+b.c

The set of natural numbers N = {1,2, 3,...}is closed under addition,
since the addition of any two produces a third number in N, for example,
1 + 2 = 3; but it does not possess an identity nor inverse for addition,
thatis0, — 1, — 2, — 3,... are not in the set. The set of integers
Z=1{0,+1,+2,43,.}isnot only closed under addition but it also
satisfies all the rules 1 to 5 for addition: the integers form a group under
addition. However, while Z is closed under multiplication it has no

inverse element for multiplication; thus %, 2, 3, for example, are not inZ.

We say that Z is not closed under division, but the set of rational
numbers, O, is, and the same is true for the set of real numbers R. Note
that Fis a commutative or Abelian group with respect to addition, and
that non-zero elements of F also constitute such a group for multipli-

cation.

Let us now summarize the laws of vectors in general. We shall give the
laws for column vectors, but they also apply to row vectors. We define
the following n X 1 vectors

a= [ai] = [01 ay ... a,,]T
b=[b]=I[by b: .. b,)*
c=[c]=1lc ¢ .. calf

and the real numbers {a;, b;, Ci, I, 5,...} € R. Then the following relations

hold:
a=Dbw a; =b;foralli.

Thus, [a,] _ [b a=b
[az] - [bz] “ {az = Dby

a+b=[(a;+ b))

The sum of two vectors is a third vector so that vectors obey the law of
closure for addition. For example,

4]+ [2] =[Gt

Commutative:

Identity:

Inverse:

Associative:

but since the elements are real numbers and (a; + b,) is the same as
(b; + a;) we have

a+b=I[(a+b)] =[(b:+a) =b+a,

thus demonstrating that vectors are commutative under addition. The
null vector 0, all of whose elements are zero, performs the role of the
identity element since

a}+0=0+a=a.

Toillustrate:

a 0 _ (@, +0) |4

[a]+ (o] -[& 0] 2]

The vector (— a) = [— a,] is the additive inverse of a since
at(—a)=[a;+(—a)] =[(a;—a)] =0

which is also evident from the example

[l [Za]-[@=2] =L}
Finally, since
@+b)+e=[a+b)+c]=[a+0G+c)]=a+(b+c)

vector addition is associative.

Vectors under addition are seen to satisfy the five conditions for an

Abelian group. Vectors of the same order are closed under addition;

they possess an identity, the null vector 0; each vector a has a unique

inverse — a; and the associative law holds. These four conditions

suffice to make vectors under addition a group, but as we have seen with

j{abnisilations, the fifth property of being commutative makes the group
elian.
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Scalar product:

Closure:

Associative:

Distributive:

Inner product:

QA

Given any vector a and any scalar r € R, then

ra =rla;] = [ra;]

is also a vector so that vectors are closed under multiplication by scalars.
For example,

Jal |l
a,|  |ra;
Note especially la =aand —la = —a. Also, since

(rs)a = [(rs)a)] = [r(sa;)] = r(sa)

the scalar product is associative. Further the distributive laws hold

r(a 4+ b) = [(ra; + rb))] =ra + rb
(r + s)a = [(ra; 1 sa;)) =ra+ sa.

The other operation which we illustrated earlier was the inner product.
Vectors are not closed under this rule. So far, we have followed the
convention that the inner product is performed on two vectors with the
same number of terms but with the first a row vector and the second a
column vector. This is not essential, but it leads to consistency of
notation with matrix multiplication. Taking the column vectors a and
b, it is usual to transpose one sO that it becomes a row vector. An inner

product satisfies the following properties:

The inner product of two vectorsis a real number. Vectors are not
therefore closed under this product. The inner product is defined as

al.b= [a;]T [b{] = Zi a;b;._ ‘
This is seen better in full

[al dy .o a,,] b1 = (albl + azbg + .. + a,,b,,).

b,

bn

Distributive:

Associative:
Hermitian
symmetry:
Positive
definiteness:

We then have the following relations

(@a4+b7T.c=aT.c+bT.c
aT.(b+c)=aT.b+aT.c

(raT).b =r(aT.b) = aT.(rb)
aT . b=>bT.a
aT.a > 0ifas~£0
The last relation may appear a little surprising, but
aT . a = [g;]7[a;] =2, a2
and, since the squares of real numbers are always positive, it follows

that a sum of squares is also positi i i
positive. The inner product is on i
a = 0. For instance ’ yzerolt

[a, azl[al] = (a2 + a,?)

as

which is greater than zero unless @, =0 =0,i i
» =0and g, = 0, in which cas
[a, a,] =[0 0], the null vector. ’ )

Let us now return to our example of Le Corbusier’ i
sier’s housing scheme at
Pessac. The schedule of windows for the four dwelli is gi
1
oML L welling types is given by

00 3 2
4 6 3 2
21 21
where each column contains the same ordered elements as the separate

column v'ectors of window types for each house. Indeed, we may think
of a matrix as a ‘vector’ of vectors

0:0:3:2 0032
tielsin|or |TE g
2i1i2i o
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Suppose now that we wish to form a matrix of costs of windows for each
house type. This could be done separately as before, by taking the inner
‘product of the cost vector [c; ¢, cs] and the window type vector for each
house. But we can also multiply the matrix by the cost vector, treating
each column of the matrix as if it were a separate vector and inserting
the results of the inner products, in sequence, ina 1 X 4 vector, thus:

.v. -
v ¢ 6][0:0:3:2
416:3:2

2i1i2i1

=[(Cl.0+62.4+6‘3.2) (CI.O+02.6+C3.1)
(c1.34¢3.34+¢.2) (,.24¢.24¢5.1)]

= [(46'2 +2¢5) (6c,+ ¢c3) (3cy + 3¢, + 2¢3) (2¢1 + 26+ )l

In one go we have the costs for the four house types. Note that the

1 x 3 vector is abstracted from a table of (cost X window types) and
the 3 X 4 matrix from a table of (window types X house types). The
result is (cost X (window types X window types X ) house types), that
is, the cost (of windows) per house type. This also gives us an insight
into the pattern of matrix multiplicationfor1 x 3 X 3 X)4 =1 x4
is the order of the resultant vector. In general, two matrices may only
be multiplied if one is of order m x k and the other is k X nso that the
resultant matrix is of order m X (k X k X)n =m X n. Such matrices
are said to be conformable for multiplication.

At Pessac, eight type 1 houses were built, eight type 2, seven type 3 and
seventeen type 4. How many windows of each type were required ? Our
main matrix is (window types X house types). If we form a matrix of
(house types x number) and multiply these together we shall obtain
(window types X (house types X house types X ) number) which is
what we require. The 4 X I column vector

~ 3 00 o©

is an abstract representation of the four house types (rows) and their
number (column). The product

00 3 2
4 6 3 2
21 21

8
8
7
17
is what we want, where, by forming the inner products of the three row
vectors with the column vector we producea3 X (4 X 4 x)1 =3 x 1
vector of quantities for each window type, namely

(0.84-0.843.7+2.17) }gg
4.8+6.8+3.7+2.17) [ =135 | ayeoY

C.841.84+2.741.17) 55| vPes.

These products have resulted in aggregate costs and quantities. How
can we obtain appropriate breakdowns of this information ? Take costs
first. We want a breakdown which will tell us the cost for each type of
. = L) -

window in each type of house. This is an array of 3 X 4 items. If we
pre-multiply our 3 X 4 matrix by a 3 X 3 matrix we will again obtain a
3 X (3 X 3 X)4 =3 X 4 matrix. The matrix we are Jooking for is
derived from a table of three separate elemental costs by window types:

Window types
Vw3
Cost of window typel ¢,
Cost of window type 2 U
Cost of window type 3 -« = -y

Such a table is abstracted by a 3 X 3 matrix whose non-zero elements
are on the diagonal. Diagonal matrices, such as this one, are always
square — of order n X n. Let us proceed to the multiplication

6 + ][0 0 3 2
¢ |14 6 3 2|
c s cfl2 1 21
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How do we do it ? The method is to partition the first matrix into its

1 X 3 row vectors and the second matrix into its 3 X 1 column vectors.
We can then form the inner products of these vectors, making sure that
we place the result of forming the inner product of the ith row vector
and jth column vector in the ith row and jth column of the resultant
matrix, thus

(0.0+¢,.440.2) 0.0+¢,.64+0.1) 0.34+¢,.34+0.2) (0.2+¢,.2+0.1)

(€c.0+0.4+0.2) (¢,.0+0.6+0.1) (¢;.3+0.34+0.2) (c1.2+0.2-|~0.l):|
(0.04+0.44¢;.2) 0.0+0.64+c5.1) (0.34+0.34+¢;.2) 0.2+0.2+¢;.1)

0 0 3¢ 2¢
=|4c, 6cy 3cy 2c,
2cs ©¢3 2¢c3 ¢

which gives us the breakdown of costs for each window type in each
house type. The method of multiplication we have shown applies to any
pair of conformable matrices, that is, matrices of order m X k and

k X ntaken in that order, for k X nand m X k are not conformable
taken in this sequence unless # = m. But diagonal matrix multiplication
before a matrix simply entails, as we see from our example, multiplica-
tion of each row of the matrix by the scalar in the corresponding row

of the diagonal matrix. This is equivalent to the scalar product of each
row vector making up the matrix. For this reason the diagonal matrix
is often called the scalar matrix.

To return to the other problem of providing a breakdown of quantities.
By analogy with previous examples it seems reasonable to suppose that
this will be given by the post-multiplication of our matrix by the scalar
matrix whose diagonal elements are 8, 8, 7, 17. The product (window
types X (house types X house types X ) quantities for each house type)
gives usthe 3 X (4 X 4 x)4 matrix we are looking for.

o003 2118 - -
4 6 3 2 5 8 v
21 21 L |

. . - 17

As we might expect, if pre-multiplication by a diagonal matrix multiplies
rows by scalars, post-multiplication by a diagonal matrix multiplies

columns by corresponding scalars. The matrix of quantities is thus

0 0 21 34
32 48 21 34|
16 8 14 17

The vector, u, all of whose elements are 1, is sometimes useful. For
example, referring back to the cost matrix,

[T 1 11[0 O 3¢, 2

4c, 6c; 3c, 2c,

2c; ©3 2c3 ©
isal X (3 X3 x)4=1 X 4vector
[(4cg +2¢5) (6c3+c3) (Beyg+3ca+2c5) 2y + 2¢; + ¢5)]
which is our original aggregate cost vector. Pre-multiplication by the
‘all-one’ vector, u, sums the columns, while post-multiplication by an

‘all-one’ vector of appropriate order sums the rows, as we see in the
example of the matrix of quantities

0 0 21 34 55
32 48 21 34 =135
35

16 8 14 17
the result of which accords with the previously calculated vector of
aggregate quantities. What does the triple product

[c, ca ¢c][0 O 3 2 8
4 6 3 2 8

7

7

ot ot

21 21
1

stand for ? We have a 1 X 3 vector pre-multiplying a 3 X 4 matrix so
that theresultisa 1 X (3 X 3 X) 4 vector which then pre-multiplies
a4 x 1vectortogiveal X (4 X 4 X)1 ‘vector’ or number. The
‘meanings’ of each matrix help us to understand what this number

99



100

represents: cost X (window types X window types X) (house types X
house types X ) number. The triple product thus gives us the fotal cost of
the windows in the scheme as a whole.

What would have happened to the breakdown of quantities if more of
the Pessac scheme had been built: if, for example, five more of house
type 4 were built ? Our original ‘quantities’ matrix is

0 0 21 34
32 48 21 34|
16 8 14 17

We need to add the windows due to the new houses. We may only add
matrices if they are conformable for addition, a condition which requires
that both matrices have the same order, m X n. We must therefore
construct a table for the new development as if it contained all the
house types

House types

1 2 3 4
Windowtypel 0 0 0 2
Windowtype2 0 0 0 2
Windowtype3 0 0 0 1

The abstract matrix of this array multiplied by five for the five houses
may now be added to our previous matrix. This is done by adding
corresponding column (or row) vectors:

[0 0i21:34 0:0i0:2
32:48:21:34|+5(0:0i0i2
(16§ 8:14 (17 0:0:0:1

[(045:0) i (0+5-0) | (21 +5:0) i (344 5-2)

=[(32+5-0) ; (48+5:0) | (21 +5:0) ; (344 5-2)
| (16 +5:0) i (8+5-0) i (14+5-0) i 17+ 5-1)

[0 0 21 44
=32 48 21 44|
(16 8 14 22

Definitions:

Clearly, this is an elaborate way to achieve this particular result, but it
does illustrate the method of matrix addition and of the multiplication
of a matrix by a scalar.

These exercises have introduced most of the essential rules of matrix
algebra which we may now summarize. Matrices are usually denoted
by a bold capital letter. Let A, B, C,... be matrices of general order

P X g to be specified more precisely as required. We may write A in
terms of its typical element, a;;, in the ith row and jth column, and
similarly for B, C,.... Thus, for matrices such as

au alz “on alq

a. a R /¢
A= :21 ;22 ;2a = [a;]

a?l al’2 e azm

and the real numbers {a;;, b;j, ¢i5, 1, S,... } € R the following definitions
and relations hold:

A .., a matrix of order m X n. Where the order is otherwise understood
the suffices are dropped.
A,,, arowvectoroforder 1 X n
A1, a column vector of orderm X 1
A, a square matrix of ordern X n
A,, = [a;]is, (1), triangular if and only if, fori > j,a;; =0
is, (2), strictly triangular if and only if, for i > j,a; =0
is, (3), diagonal if and only if, for i £ j, a;; =0
is, (4), symmetric if, and only if, a;; = a;;
is, (5), skew-symmetric if, and only if, a;; = — ay;.
Examples of these matrices are

-fgl [af¢g a-'] afg][ . fg]
conl |-bh| || |foR| |=f &
[ ceel |rce ghec —g —h -
m ()] A3 @) )

A diagonal matrix is like a ‘sloping’ vector, and since it is completely
specified by the statement ‘the diagonal matrix A whose non-zero
elements correspond to the elements of the vector a’ it is frequently
abbreviated 4. Thusifa = [¢;, @, a;]T,then
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Equality:

Addition:

Closure:

Commutative:
Associative:

Identity:

Inverse:

Scalar product:

Closure:

Associative:

102

a -
a=|- as * |
© . g

Two m X nmatrices A and B are equal if their corresponding elements
are equal

A=Beo aiy = b,'j for all i,j. Thus

ay =by

[au a12] — [bll b12] . ay =by
o1 Qg by by @13 =Dby
Ay = bas.

Two m X nmatrices A and B are conformable for addition and their
sum is also a m X n matrix.

A + B = [(a;; + b;;)] so that conformable matrices are closed under
addition. The following rules also pertain:

A+ B = [(a; + b))l = [(bs; + a;)] =B+ A
A+ B+ C) =[ay+ (b + ci)l = [(as; + b)) + ¢yl =(A+B) + C

A+ 0=0 -+ A = Awhere0isanm X nmatrix with all zero
elements.

A+ (—A) =[a;+ (—ai)) =[(a; —a;)] =0

Matrices of order m X nthus constitute an Abelian group under
addition. We also have similar rules for scalar multiplication as we
have for vectors.

Given any matrix A and any scalar r € R, then

rA =rla;;] = [ra;]

which is another m X n matrix.

(r)A = [(rs)]ay] = [r(sa;;)] = r(sA)

Distributive:

Multiplication:

Associative:

Distributive:

Identity:

r(A + B) = [(ra;; + rb;)] =rA +rB
(r+9A =[(ra;; + sa;;)] =rA + sA

Two matrices are conformable for pre-multiplication if the rows of the
first matrix contain as many elements as the columns of the second.
Thus two matrices A,,, and B,,, are conformable and their product is
anm X nmatrix:

AB = [a;;][bi;] = [Zx aixbyi]
which may also be represented in terms of the inner product of the rows

of A, the 1 X p vectors a,7, and the columns of B, the p X 1 vectors by,
thus

a,” | [b, b,
a,T

b,] = [a/T.b;].

2,7
The products of two matrices are not usually commutative and indeed
if AB exists there is no reason why, in general, BA should exist, as we
have already discussed. Matrices of the form A,,,, and B,,, are conform-
able for pre- and post-multiplication, as are square matrices. Usually
AB =~ BA. However, the following rules apply for conformable
matrices:

A(BC) = (AB)C

AB 4+ C) = AB + AC
(A + B)C = AC + BC

The identity matrix, I, of order nis the n X n diagonal matrix

0ifi=£j
I=1[3;;] whered;; = {1 i :':j

Then for any n X nsquare matrix A

Al=TA=A
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Inverse:
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and for any m X n matrix B
BI=B

and any n X m matrix C
IC=C.

For example,
[an 012] [1 ] _ 1 ] I:an am] — [au ‘112]
ayn ap|[* 1 |- 1] [an az L

[au ayp alS] [1 ']___.ran Qo a13]
Ay Gy ]| 1 . dea Qg

[1 ] (T2 T ay; Gyg
© 1]l ayn as Qy  das
a3 dss | d31 432

Only square matrices have inverses and then they have to satisfy the
condition that their determinant is not zero. They are then said to be
non-singular.

[The determinant of # X n matrix A is a number given by the expression
det A = ZN €11 Jeeddn al,-l az,-a...a,,jn

where ¢; ;. ; = + 1ifj, js...j, is an even permutation of 1, 2,..., nand
172...9n

— 1if j, j,... jn s an odd permutation of 1, 2,..., n; and where the sum-

mation extends over all N = n! permutations j, j,... j, of the integers

1, 2,..., n. The determinant of a square matrix A of order 2 is the number

(@11820 — @10051): j1 j are the two permutations of 1 and 2, namely 1, 2

and 2, 1 so that a,; @y, = andss for the even permutation 1, 2; and

ay, dyj, = G120y for the odd permutation 2, 1 (it takes an odd number of

pairwise interchanges to produce 2,1 from 1, 2).]

The multiplicative inverse of a square non-singular matrix is defined by

AA-1=AA =1

Figure 4.2

For example, the 2 X 2 matrix [z ‘bi] has an inverse if its determinant

defined as (ad — bc), is not zero. This inverse is given by the matrix

1 [ d —c]
ad —be|l—b al

Let us test this by direct multiplication

em—e ale d=mmli—ceta —to]

This brief survey of the basic rules of matrix algebra merely touches on
some of its complications, but it is clear that matrices do not usually
form a multiplicative group. Only square non-singular matrices do so,
and then the group is non-commutative.

B

A’ c’

So far, in this chapter, we have discussed vectors as ordered ‘lists’ of
numbers, but now we shall give them some geometric substance. In
Chapter 2 we referred to the translation, T, which carries every point
Pto P’in such a way that if 4, B, C are any three non-collinear points
and A’, B, C' are their corresponding images under translation then
the vectors A4’, BB, CC areall equal (Figure 4.2). By this we mean that
the length between any P and its image P’ is equal to the length between
any other point, Q, and its image, Q’, We also mean that the direction of
any two vectors is the same, even though their positions differ. A vector
in this geometric sense has just two properties, length and direction, in
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Figure 4.5
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Figure 4.3 Figure 4.4
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v v
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]
v Y
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fact A4', BB', CC’, as vectors, are indistinguishable and may be given
the single name p, let us say. The line segments AA’, BB', CC’ are, of
course, distinguishable because they possess the additional charac-
teristic of position which vectors do not have. Sometimes, however,

it is useful to give vectors a precise location ; we then refer to them as
position vectors (Figure 4.3). The most frequently used position vectors
are those which have their ‘tail’ tied to a fixed reference point, the
origin 0.

Consider a plane marked with an origin and two axes which intersect
at right-angles at the origin. (The stipulation about being a right angle
is arbitrary, and any non-zero angle would do. It just happens that we
habitually measure things, like the slope of a hill for instance, along
perpendicular axes.) How can we specify a vector p with reference to
the origin and axes ? We could measure its length which we denote by

I p ll5 signifying its magnitude or absolute value. We would also need to
specify its direction by the angle the vector makes with respect to the
axes. By convention, the angle to be measured is the angle in an anti-
clockwise sense between the equivalent position vector at the origin and
the positive x-axis. It is more convenient, however, to measure the
‘sides’, u and v, of the rectangle which is square to the axes and whose
diagonal is the vector we are concerned with (Figure 4.4). There are four
vectors which inhabit each rectangle. To distinguish between them it is
necessary to measure the directed lengths of the sides: that is to say,
starting with the corner containing the ‘tail’ of the vector if we measure
uin the same direction as the positive x-axis we assume it is positive,
but if we measure  in the opposite direction we prefix a minus sign,
thus, — «. Similarly with v in regard to the y-axis. Since it is important
to know which of the two numbers is measured in the x-direction and
which in the y we represent this geometric vector with the algebraic
vector notation. The four vectors on the diagonals of the rectangle of
sides  and v are shown in Figure 4.5. Notice that the pairs of ‘equal
but opposite’ vectors are related one to another by the scalar product
with — 1, thatis,

o R B i R

Figure 4.6

o

Geometrically, how shall we interpret vector addition ? Suppose thata
point P is defined by its position vector [x y]T and that we then add the
vector [@  b]T. By the law of vector addition we obtain a new vector
[a+x b+ y]’-" which as a position vector determines another point P’
in the plane (Figure 4.6). We then have the well-known ‘parallelogram
of forces’ diagram in which OP + PP’ = OP’,Now it is clear that
whatever point we choose in the plane, P, Q,..., the vector [a  b]” repre-
sents the shift from that point to the image. We thus have a one-to-one
correspondence between a vector and a translation. Indeed, vectors and
translations provide an example of what mathematicians call iso-
morphism:

Translations Vectors
7 4% {v,+}
Closure: . T T,eT at+beV

Commutative: T,T, =T,T; at+b=b+a

Associative:  Ty(T,Ty) = (T,T)T; a+(+c)=@-+b)+c
Identity: TI=IT=T a+0=0-+a=a
Inverse: TT1=TT=I at+(—a)=(—a)+a=0

Isomorphic groups have the same structure although they may differ in
respect of notation and the nature of their elements. In this case both
vectors under addition, and translations under multiplication, have the
structure of an Abelian, commutative, group. Notice, too, that whereas
translations have the identity I, vectors have the identity 0. An everyday
example of isomorphism, which parallels this, is to be found in the use of
additive logarithms for multiplying real numbers together. If r; € R and
In r; € L, we then have

r;<-Inr; forallr,
and
riay<olnr;+1Inr;.
Especially, we have
ri*<nlinr,

which is similar to the relationship between successive translations T*
and the addition of equal vectors #a: in the one case we have a scalar
exponent rule, and in the other a scalar product rule.

Consider a pair of rectangular axes in the plane with an origin O. If
the y-axis were moved 3 units to the right it is clear that every y-com-
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Figure 4.7
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0

ponent of the position vector of a typical point would be decreased by
3, while a similar move to the left (O moves to O’ which is [— 3 017

on the old system) also ‘decreases’ the y-component of a typical position
vector by — 3. The same effect occurs with shifts up and down with
respect to the x-components. In general, if the coordinate axes (the base
vectors) are moved to a new origin O’, or the point [z 5]T measured
from O, then the new name which the point P, [x y]T, acquires is P/,

[x —a y — b]7, with respect to the new origin O’ (Figure 4.7). Such a
transformation involving the franslation of axes, where points remain
fixed but the reference system changes, is called an alias transformation
since points acquire new names. The previous example involved a
mapping of one set of points, P, Q,..., onto a set of points P’, 0’,..., ata
new address with regard to a fixed reference system. Such a translation
is called an alibi (Figure 4.6).

We have been loosely referring to coordinate axes. Strictly speaking we
should speak of base vectors. The vector [x y]T may be expressed in
terms of the sum of two scalar products, thus

B1==[a]++[1]

any vector may be expressed in this way. The zero-one vectors [I  0]7
and [0 1]7 are called the base vectors which, if they are mutually per-
pendicular and they need not be, are usually abbreviated i and j. The
scalars x and y are the respective i- and j- components of the vector

[x y]7 (Figure 4.8). There is a one-to-one correspondence between the
traditional x- and y-axes with units of measure along each and these

unit vectors, and since the former is certainly more familiar we shall con-
tinue to refer to the x- and y- components of a vector, rather than the

i- and j- components.

We see now that the scalar product xi gives length x to the vector in the
direction of i, and yj gives length in the direction of j. In general, if p is
any vector, mp is a vector in the same direction as p but m times as long.
But what geometrical interpretation can be given to the inner product
of two vectors ? For example, what meaning can we attribute to the
results

Figure 4.9

Consider first the general case of two position vectors 5}—’1 (p,) and

0—1’2 (p») with components x;, y; and x,, y, respectively. The inner
products

P:- P = (%) = x;2 + »°
and p;.p; = (P?) = Xo? + y,?

look remarkably familiar. They are vector representations of
Pythagoras’s theorem concerning the square of the hypotenuse being
equal to the sum of the squares on the other two sides. Thus p.. pis the
square of the length of the vector p. This length is usually denoted by
[Iplls = (p. p)% We see that the unit vectors i and j have length || ||,
=|jlls = 1. But what geometric meaning can we give top, . p, =

X1 %3 + Y172 ?

Let the angle / P,OP, be 0, and let the length of the vector P,P, be r.
Then by the law of cosines for the triangle P, OP, (Figure 4.9) we have

r2 = ||py > + [ palle® — 2 I palls - [ Pl cos 8

but in the triangle P,0'P, we see that r? = (x; — x,)? + (3, — y»)?
so that on expansion

r? = (x? + %) + (1 + 328 — 2(x: %5 + y17s)
= [[palls® + [IPlle® — 2p; - P2

whence combining the two equations for 72 we have the result that

P1 - P2 = [[Pa/lallpall; cos 6.

o
2
i.j=0

When 6 =—, cos § = 0, so that

confirms that the two unit vectors are perpendicular as we defined them.
The angle between any two vectors is then given by its cosine
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Figure 4.10

P1-P2 _ X1Xg + Y1Va
[Pallallpalla 4/ (2% + 21 + V(X2 + 25D).

cosf =

The angle we choose between the two lines is the interior, or enclosed,
angle which satisfies the conditions 0 <6 < 180°, so that there is no
ambiguity since arc cos 6 is then unique.

Consider the square Q in Figure 4.10. Its vertices are located by the
position vectors [0 0]7, [0 1]7,[1 1]Tand [l O]7. If we then apply
the translation [4 0]7 to these points we move the square to a new
position — four units along the x-axis — with vertices

01  [4] [47 b
[0_ *1o] = o] 5

2 BNs
01 41 [41 & o
o) = (1) © ¥

|
L[
o[-

L~

[o]

Figure 4.11
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At the same time all the points within the square [x y]T e Q are
translated to [(x + 4) y]T asin Figure 4.11. If, however, we apply:the
translation [§ $4/3]7, the square is moved at 30° to the previous
translation, but now with a three-unit shift in the direction of the trans-
lation (Figure 4.12).

Figure 4.12

Figure 4.13
Le Corbusier’s layout for
houses at Pessac

[0

In Le Corbusier’s scheme at Pessac two of the house types are arranged
in rows. These are the semi-detached dwellings, house types 1 and 2
(Figure 1.6), and the terrace unit, type 3 (Figure 1.5). Consider the set
of points (position vectors) s = [x y]T which make up the plan of the
semi-detached house S, in Figure 4.13, so that we may write {s | s € Sp};
and the set of points (position vectors) t = [x y]T within the terrace
house T, in the same figure, {t | t € T, }. We can represent the next house
in the row of semi-detached houses by a translation represented by a
vectora = [4 0]7 if our unit of measure is the length of side of Le
Corbusier’s square module. Thus the set of points in

S,is {s + a}
Syis {s + 2a}
S.,- is {s—i: ia}.

Hence, if [x y]7 is the position vector of a point of the ground plan in
Sy, then the corresponding point in the ith pair of semi-detached
dwellings S is [(x + 4i) yI7.

The terrace is set at 30° to the row of semi-detached dwellings. The shift
between one house and the next in the line of translation is now 3 units.
As above, in the example of the square, the vector b = [§ $4/3]7
represents the required translation. The ith house in the terrace T; is
then described by the set of vectors {t + ib}. <

_Dsa D& DSs DS. Ds7

111



1]

Figure 4.14

Examples of matrices of
some commeon transfor=
mations: N
a, identity -

b, rotation throuéh [}

¢, wholeturn (identity)
d, quarterturn

e, halfturn

f, three-quarter turn

g, reflectioniny = x

h, reflectionin x = 0

i, reflectioniny = — x
j, reflectionin y = 0

k, one-way stretch

1, two-way stretch

m, enlargement

n, shear

o, affinity
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b

B

[ cosf sin 8
—sin 6 cosé

d e f

31
i 2]
Translations as we have seen in Chapter 2 are just one of a number of
isometry transformations. The general transformation

x a"Ep ”
[y] 6[6 d][y] - [g ]
is said to be affine. We have already met the geometrical concept of
affinity in Chapter 1. There, an affine transformation was described as
one which preserved parallelism. The algebraic expression above
includes a translation [f g]7 which in no way changes the shape of
an object under transformation, so that without loss of generality we

may just consider the geometrical meaning of the 2 X 2 matrix pre-
multiplication

—— ]

— . 7 a b
An affine transformation is reversible so that the inverse [c d] must

exist and, as we have seen, this requires the determinant (ad — bc) to be
non-zero. Figure 4.14 shows the transformations induced by various
2 X 2 matrices.

The general rotation matrix is

S, — cos@ sin@
¢~ | —sinf cosf

whose determinant is cos?6 + sin?0 = 1. Matrices of this kind form a
multiplicative Abelian group with the properties that Sy, Sy, =S,  g,,
Sy Sy~ = L and, especially, Sy = S, (de Moivre’s theorem). Notice
that S, = [ (1)
‘explains’ our previous discovery that [#  v]Tand — [u v]T are opposite
in sense, but equal in length. The rotation through one right angle forms
a cyclic group of period 4:

= (1)] is a halfturn, H, and is equivalent to — I which

5, =1 o]

S%2=:—(1) <1>—(1) 5]=[_<1> _(1)]=S,(=H)
s;_s=:_(1) (1)::_(1) _(1)]=[(1) —fl)]=s*‘g
sa=[_ o7 To)=lo 1]=semr

The reflection matrices do not form a group. The product of two
reflections is, as we know from Chapter 2, a rotation, so that reflection
matrices are not closed under multiplication. The general reflection
matrix is

—sin@ cosf] [0 1 cosf sind
[ cosf sin@] |1 OJ[ —sin@ cosd
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so that a reflection may always be compounded of a reflection about
y = x and a proper rotation. A glide reflection reintroduces the trans-
lation which for the moment we are ignoring. The determinant of a
reflection matrix is — (cos2f + sin20) = — 1. Together the four reflec-
tion matrices and the four rotation matrices form a non-commutative
multiplicative group with the following multiplication table :

I S S? S8 R RS RS? RS?

I I S Sk S3 R RS RS? RS®
S S S? s3I RS® R RS RS?
S? S? S I S RSz RS® R RS
S3 ISEE | S Se RS RS* RS® R
R R RS RS* RS?® 1 S S? S3
RS RS RS* RS® R s I S S?
RS? RSz RS® R RS §2 SR | S
RS3 | RS* R RS RS S S? S3 I

If the determinant of the affine matrix A = [i Z] is &+ 1 the trans-
formation is an isometry, and the positive sign indicates that the iso-
metry is proper while the negative shows that it is improper and that

the object is handed as a result of the transformation. In general, the
absolute value of the determinant (ad — bc) measures the change of
scale resulting from the transformation as can be seen from the stretches
and the enlargement. The matrices for one-way stretches are of the form

& elo )

with areal changes in the image proportional to | m |: 1 or |z | : 1 with
respect to the original. A two-way stretch is given by a matrix of the form

5 )

with an areal change of | mn | : 1. While an enlargement (or dilation) is
effectively straight scalar multiplication since

m 0
[0 m]=ml.

Here the areal enlargement is m? : 1. The shear matrix has just one zero
and can take the form

(U a b or| @ 0 a b
c d|’ [c 0) c d|I’ |0 d
with areal changes of | bc | : 1in the first two, and | ad | : 1 in the second.

These matrix operations are employed in computer-aided design where
graphic presentation requires the ability to manipulate forms —to
change location, orientation, sense, reflection, dilation or enlargement,
or to present an axonometric (affine) view. To develop perspectives it is
necessary to define points in terms of coordinates called homogeneous

or barycentric. Here instead of just two coordinates to define a point in
the plane, we require three since absolute length is no longer as important
as the ratio of lengths. The transformation matrix for a perspectivity in
two dimensions is a square matrix of order 3. In three dimensions our
affine coordinates have three components, and the affine transformation
matrices are square of order 3; while we require four coordinates in
projective space for perspectivities accompanied by a square trans-
formation matrix of order 4.

Dilation and enlargement are everyday affinities in an architect’s office
as plans are produced at various scales for a variety of purposes, but
there are two instances in actual building projects which are of some
interest. The first occurs in an early project by Frank Lloyd Wright for
a house for the wealthy Chicago industrialist Harold McCormick. This
is an example of dilation. At one end of the house, by a pool, is a half-
scale playhouse for children where all the detailing of the adults’ house
are reproduced in miniature (Figure 4.15). The other example is reported
by Le Corbusier and concerns his project for the Governor’s Palace at
Chandigarh, the new capital of the Punjab. Le Corbusier designed
many of his later buildings on a proportional scale of dimensions (see
Chapter 9) which he named le Modulor. There are two interlocking
scales giving, for example, on one scale a door-height of 2260 mm and
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Figure 4.15

View of the McCormick
House by Frank Lloyd
Wright showing the half-
scale playhouse

116

3 From Le Corbusier, Le Corbusier 1910-1960, Zurich, Editions Girsberger, 1960, p. 206.

on the other 2959 mm. Le Corbusier describes this case of erroneous

enlargement in his inimitable style (and we love him for it):
‘Le Palais du Gouverneur couronne le Capitol. Son plan, sa
silhouette sont le produit des strictes données du probléme. Au
cours de trois années, 19511953, le projet développé a pris
corps. 1953: Crise! Le cofit est infiniment trop élevé! Que s’est-il
produit ? Les plans étant acceptés, on avait revu les hauteurs et
les largeurs de toutes choses...et I'on avait glissé (puisque c’était
pour le Gouverneur!) du c6té des cotes les plus fortes du
Modulor. Le volume s’avére double du précédent! Et ’échelle
du Palais démesurée! On avait bati a I’échelle des géants!

Tout fut reconsidéré. Le choix de valeurs suffisantes plus basses
du Modulor fit baisser de moitié le cube de la batisse et nous
réinstalla a I’échelle des hommes. Les plans d’exécution achevés
demontrérent qu’ainsi nous avions replacé le Gouverneur dans
une maison d’homme.’3

Finally, there is a special set of zero-one matrices which form a multipli-
cative group called permutation matrices. These are defined as

le,'zja...,',n = [e'.;1 e,2 eja oo e;n]

where ji, jp, j3,--»Jn are @ permutation or rearrangement of the numbers
1,2,3,...n,and e, 12 €ig> €ig50r-1€5, ATE elementary n X 1 column vectors with
the jy, ja, J3»---»Jn €lements respectively equal to 1 and all the others zero.
For example, withn =3

B 1 0 0
o g s e,=|(0], e,=]|1[, es=|(0]|,
0 -. "\ _S'\Q Eg’v« L.O 0 ].
- N 3
. >, wal % I\ -
R ; £ = % [1 0 O]
8 <\ sothat Py =[0 1 O|=[e; e eg]=I
[0 0 1]
: P oW , [0 0 17
.'Jr' and Py =1 0 O|=[e;, e; ]
3 |0 1 0]
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Figure 4.16

The permutations of the
new Mark 8 telephone
box designed for the
General Post Office by
Bruce Martin

l
N
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4 See Bruce Martin, “The Smallest Building; the Genesis of the Mark 8 Telephone Box’ in
RIBA Journal, August 1969, pp. 320-5.

and so on. Pre-multiplication by a permutation matrix interchanges the
rows of a matrix, while post-multiplication permutes the columns. Later
we shall make use of these matrices in describing shape.

‘There is, however, an interesting example of the use of permutation in
design in Bruce Martin’s new telephone boxes* for the General Post
Office (Figures 4.16-4.17). The plan form is square. The elements
consist of a panel containing all the services on one side of the square,

s, an entrance to the booth, e, and two window walls, w and w. In

cyclic order the plan of the telephone box might be represented in
vectorform,b=1[s e w w]T,orany of the12 distinguishable perm-
utations of these four elements. These are comprehensively described by
Pb where Pis a4 X 4 permutation matrix. Next, Martin has designed
the box so that the door may be hung in two handed positions — hinged
to the right or to the left. The door in each of its three permissible
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Figure 4.17 Tableau showing the
seventy-two combina-
tions of pairs of Mark 8
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positions — the fourth having been pre-empted by the service panel —
may be reflected. This gives 12 X 2 = 24 different arrangements and
orientations of one telephone box. An isometry of this box may now be
positioned against it in any position in which two doors do not open
into one another! This gives rise, without repetition, to three quarter-
turn rotations giving 24 X 3 = 72 possible arrangements of two tele-
phone boxes.

We have concentrated in this chapter on two particular uses of vectors
and matrices. First we discussed their use as a way of keeping infor-
mation neat and tidy in such a way that we can operate on the data to
generate new arrays of information. Then we discussed some geometric
interpretations of matrices and vectors, in particular, their isomorphism
with the symmetry operations discussed in Chapters 2 and 3. In later
chapters we shall make use of matrices to describe simple relationships
between objects, to map networks of routes and to calculate shortest
paths.

5 Point sets and modular spaces

In any quantitative studies of building or environmental geometry it is
clearly desirable to be able to describe the forms with some mathematical
precision. This is a task which, in general, lacks the elegance and
simplicity we usually expect of mathematics. It may be this absence of
aesthetic content, in the mathematical sense, that has resulted in the
comparative neglect of the study of shape and form in the literature.
Historically, mathematicians have tended to interest themselves in
regular and semi-regular figures. Theory here has ancient roots going
back to Egyptian and Greek artists and philosophers. Recently there
has been a revival of interest in the Archimedean and Platonic space-
filling solids in architectural design, notably through the work of
Buckminster Fuller and a well-illustrated exposition by Keith
Critchlow,® but on the whole it seems reasonable to suppose that
three-dimensional symmetries are more relevant in the micro-worlds of
molecular biology and chemistry where the force of gravity does not
dominate, giving preference to one dimension — the vertical — over the
others.2 It is surprising that the analytical tools required for the syste-
matic study of these figures were not fully available until the nineteenth
century. The subject is particularly fascinating because of its association
with physical and chemical structures and its relationship to the sym-
metry and patterns of many artistic and architectural products of man.

During this century there has been a growing interest in irregular forms.
This has arisen in part through problems associated with convexity, and
the importance of convexity in linear programming and related
extremum problems. Also, developments in set theory and group
theory since the nineteenth century make it possible to describe complex
shapes more concisely.

In this book no attempt is made to derive a unique or universal method
of describing form. It would seem sensible to be pragmatic about this
matter, and to choose the most appropriate method in a given situation
or for a particular purpose. A system which can only cope with rect-
angular forms will be more economic in describing such forms than a

1 Keith Critchlow. Order in Space; a Design Source Book, London, Thames & Hudson,
1969.

2 For example, R. Buckminster Fuller’s work is acknowledged in passing by A. Klugand
J. T. Finch, ‘Structure of Viruses of the Papilloma — Polyoma Type, 1. Human Warts’ in
the Journal of Molecular Biology, vol. 2, 1965, pp. 403-23. Also see H. H. Jaffe and Milton
Orchin, Symmetry in Chemistry, New York, Wiley, 1965.
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3 Albert Farwell Bemis and John Burchard. The Evolving House, Cambridge, Mass., The
Technology Press, MIT, 1933-36. This work is in three volumes. See particularly, vol. 3,
Rational Design.

more general system capable of handling non-rectangular forms. There
is no great virtue in having a universal system when it is not required. If
the forms are rectilinear, but non-rectangular, then we shall be forced

to use a more generalized method of description, but it is likely to be
that much more cumbersome to manipulate. If the forms are curvilinear,
then the description becomes even more difficult. To use a curvilinear
method of description for rectangular forms would burden us with
considerable irrelevancy and redundancy.

We shall start with a simple modular ‘building block’ description of
shape and form. In two dimensions thisis a method used in ecology,
geography, statistics and urban studies in the form of a square grid or
system of quadrats. In three dimensions the method was used for the
first time by Abbé Haiiy at the end of the eighteenth century to describe
crystal forms by means of identical molécules intégrantes. In the thirties

of this century the American designer, Albert Farwell Bemis, introduced

the method systematically into modern architecture through his
pioneering work on modular coordination.® And recently many com-
puter-aided design methods have adopted, often for parsimonious
reasons, modular space elements. The method has the important merits
of simplicity, economy and wide application. The modular description
serves as a useful introduction to some basic ideas in the theory of sets,
in particular, sets of points.

In Chapter 6 we relax the constraint of modularity while retaining
rectangularity. We introduce further set-theoretic notions such as the
cartesian product of two sets and the power set. We start with the
description of one-dimensional components, and then proceed to
describe two-dimensional panels and three-dimensional blocks. We
show, conceptually, how a building plan, or form, is stored in a com-
puter, and discuss some of the combinatorial problems of packing,
stacking and nesting rectangular forms together. In Chapter 7, we look
at non-rectangular two-dimensional forms. The method suggested
should be of value in describing sites and complex floor plans. Basically
we employ matrices and vectors to denote these shapes, and use theorems
on convexity to manipulate them. We give formulae for the calculation
of areas, perimeters and centroids for plane irregular figures whether
these are discontinuous or multiply connected. Briefly we shall look at
some of the problems of measuring the ‘shapeiness’ of shape as opposed
merely to describing it. The geographer William Bunge has made a

Figure 5.1

4 Lionel Mar<':h and Michael Trace. The Land Use Performance of Selected Arrays of Built
f‘orms, Working Paper 2, University of Cambridge, Land Use and Built Form Studies,
968.

5 This approach was suggested by illustrations in James F. Gray, Sets, Relations and
Functions, New York, Holt, Rinehart and Winton, 1962, which provides an easy intro-
duction to set theory. For fully programmed self-instruction see Myra McFadden, Sets,
Relations and Functions, New York, McGraw-Hill, 1963. A more rigorous account is
given by J. Donald Monk, Introduction to Set Theory, New York, McGraw-Hill, 1969.

contribution here, and so too have microbiologists concerned with
chromosome patterns. That measures of shape are desirable in archi-
tectural studies would seem to be self-evident. For example, we are used
to the idea of density control in urban planning, that in a given district
no more than so much floor space may be built on each hectare. But
what does this mean when the sites may vary a great deal in shape ? Are
there more precise ways of measuring shape than the verbal ‘long and
thin’, ‘roughly triangular’, ‘squarish’ ? March and Trace* have suggested
that shape of site may be as important an influence on development and
land use performance as its area, but it is the latter that is used in
administering legislation and not the former, for the practical reason
that up until now the one has been quantifiable and the other has not.
Finally, we shall look at two architectural problems related to sun-
lighting and overshadowing, and to the obstruction of view through a
window of a room caused by external buildings. Both problems may be
handled in set-theoretic terms by making use of some fundamental ideas
of convexity, in particular a remarkable theorem by Carathéodory
which enables us to test whether pointslie inside or outside a convex set.

Perhaps the easiest configurations to describe are those that are modular
and rectangular, that is to say, shapes which can be compounded of a
small rectangular element such as a square quadrat in two dimensions
and a small cube, a cubelet, in three. Effectively, what we are looking for
is a simple way of naming the elements and a means of saying how they
are combined. This gives us an opportunity to discuss some fundamental
ideas in set theory.5

Let us look first at a simpler problem; that of naming and assembling
units of a fixed length along a line. Imagine a line, extended indefinitely
in two directions, marked off in unit lengths. Take one of the marks and
give it the name 0. Call each mark to the right 1, 2, 3,... in order, and
each to the left — 1, — 2, — 3,.... In this way we map the set of integers,
Z=1{.—3,—2,—1,0,1,2,3,..} onto points of a line.

W

. i
—S-4-3-2-1 0 1 2 3 4
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Figure 5.2

Figure 5.3
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Let us name the unit which lies between i andi+ 1,[i,i + 1]or (&) for
short. Using the notation for specifying sets we define a unit element {i)
as

i+1]={xeR|i<x<i+1icZ}.

This mathematical sentence says that the unit <i) consists of all those
points at a distance x from 0 which lie between, or are equal to, i and
i 1 1 where, x is a real number (x € R) and iis an integer (i € Z). Thus
{— 4,40, 1), and {4) are the names of the units illustrated.

(=4 0)<1) 4)
—5—4-3-2-101 2 3 45

From a formal point of view it is useful to describe a combination of
units by employing the set-theoretic operations of union and intersection.
The union of two sets 4 and Bis a new set, denoted by A U B(pro-
nounced ‘4 cup B’), consisting of elements that are in either 4 or B or
both.

AUB={x|xedorxeB}

For example, if 4 = {{1),<{2), (4>} is a set of units as described above,
and B = {{2), {(3)}is another set,
then 4 U B = {K1),¢2),<{3),{H}.

Also the intersection of two sets A and B is a new set, denoted by 4 N B
(pronounced ‘4 cap B’) consisting of all elements which belong to both
Aand B

AN B={x|xedandxeB}.

Thus taking the two sets above A N B = {¢(2>} since (2 is the only
element appearing in both sets. Note that in our examples 4 U B

— B U Adand 4 N B = B N A:infact, this commutative property of
these operations is always true (Figure 5.3).

Out of the set C = {{1), {2), (3), {4> } we may select elements to form
the sets 4 = {{1), (20, <4>}and B = {{2), {3>} (Figure 5.4). A and B

VT OREIRCH
Figure 5.4

Figure 5.5

KOHKI>X2y<3) <4)

<0> 3

0> <1) 4

are called sub-sets of C, and both A and B are said to be containedin C.
Employing a notation, C , analogous to the more familiar inequality
‘lessthan’, <, we write 4 C C,B C C. The large containing set from
.which all subsets are subsequently taken for the purposes of discussion
is known as the universe of discourse, I. The set composed of all elements
gf {4 not belonging to A4 is called the complement of A and is denoted

y A’

A ={xel|xeA}.

Hence for 4 and B,
if I'= {<0), <1>,<2>,<{3>,<{4>}
then 4" = {<0), 3>}
and B' = {{0),<1), 4>} (Figure 5.5).

Clearly 4 U A’ = I,but A N A’is a set without elements since 4 and 4’,
by definition, do not share elements in common. This empty set is
usually denoted by 0. Thus 4 N A’ = 0. Two sets 4 and B for which
A N B = (are said to be disjoint, and they clearly hold no elements in
common. Note, however,that 4 U A = 4 N A = A: thisis known

as the idempotent relationship. The basic laws of the algebra of sets are
shown below and illustrated in Figure 5.6.

Inclusion C :

Reflective: Ac A

Anti-symmetric: A C B,BC Aimplies4 =4

Transitive: A C B,B C Cimpliesd Cc C

Universal bounds: 0 cAcCI

Union U ;

Intersection N :

Commutative: AUB=BUA
ANB=BN A

Associative: AUBUC=A4AUBUO

ANBNC=4AnBNO
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Figure 5.6

Tableau illustrating the
operations of union and
intersection on two sets
A and B and their com-
plements 4’ and B’.

The two solid squares
represent the universe of

discourse givenby 4 U 4’

= I, BU B’ = I; while
the two empty squares
represent the null sets
givenby 4 N A’ and
BNPB
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U union

D

intersection

Idempotent:

Distributive:

Consistency:

Properties of 0:

Properties of I

Complementarity:

Duality:

Involution:

AUAd=A4

ANA=A4
4uUBNCO=AUBNAUQO)
ANBUO=ANBUMUNO
A C Bisequivalentto4 U B =28
A C Bisequivalentto4d N B= 4

pud=4

PNA=0

Iud=I

INA=4

AUA =I

ANA =0

(AUBY=4'n B
(ANBY =4'U B

A4) =4

cm [a,, a,] = [

A number of units combined end-to-end make up a component. Thus
[0, 1] and [1, 2] make a component two units in length. Let us call this
component [0, 2] so that

[0,2] =[0,1] U [1,2].
But a component such as [1, 5] is only clumsily written out in full
[1,5]1=[1,2]1 U [2,3] U [3,4 U[4,5]

and the contraction

4
mx:Lﬁu+u

i=1

may be used. This says that the component [1, 5] is made up of (is the
union of) all elements <i» where i takes the values 0 to 4, that is, 0, 1, 2,
3, 4. Thus, in general,

a, — 1
[ay, a] = U 3.

i=a,

The length, or dimension, of the component [a,, a,]is a, — a;. We
write

d[ay, a5] =[a; — a4].

Its centre of mass is the point at a length % —; % from 0,

a, + az]
5 .

So far our element exists along a line in one dimension, but we may
extend the idea into two and three dimensions without difficulty. Con-
sider, for example, a square element whose sides are of unit length. We
shall call such an element a quadrat.
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Gj+1) G(+Lji+1 Quadrats, in a plane marked by a modular grid, may be identified by four \ Simple rectangular shapes, or components, consisting of a number of

Li+1 . . quadrats are described by the operation of union. Thus the component
numbers [j,j 11 ] which, taken two at a time, one from the top row which we shall call [1, 4; 1, 2] is given in full by
and one from the bottom, represent the four vertices of the quadrat
G.J) G+ 1,)) (Figure 5.7): (i,), (i,j + 1), (i + 1,j + 1) and (i + 1, ). To save space, [1,4] _ [1,2] U 2,3 U 3,4
Figure 5.7 it will often be more convenient to express these numbers as [i, i + 1; ‘ 1,2 1,2 1,2 1,2
J»j + 1] where we use a semi-colon to mark where the next row starts.
We shall also contract the name of a quadrat further, as we have done l =<1;1> U2;1) UE; D
for the unit element above, to <i; j>. We use each name as appropriate, | 5
just as the name Candida may be contracted to Candy, or yet more to 4 which may be further contracted as before to
Can. ‘
[ 3 3
. 5 | 1,47 )
Figure 5.8 l . | L [ ] B [1,2] = U ;1)
t O 11 L
3 01 2 3 4 5 which simply says that the rectangular component is the union of all
5 Figure 5.9 quadrats‘<i; 1> where i successively takes the values of 1 to 3, namely,
: 1,2, 3 (Figure 5.9).
-S4 32110 1 2 13 14 )5 Similarly the descriptions of [1, 2; 1, 5] and [1, 4; 1, 5] are given by
]
— . 4 3 4
1,2 . 1,4 .
|| =3 [1’5]= U <1;j> and [1’5]= U U<z;1>
—4 i=1 =1 g=1
-5 =
5 5 —
We shall define the quadrat <{i; j) by 4 . 4 — .- —
N | ., HENE |
i+ 1L, j+1={xy»eR|i<x<i+1,j<y<j+ 1,0 eZ?} | 2 £ 5 = R |
| | o . | EEE
This statement tells us that the quadrat which we name <7; j) consists of
all those points (x, ) in two-dimensional real space, R, such that x lies 0 1 0 -
between i and i + 1, and y lies between j and j + 1 where i and j are 01 2 3 4 5 01 2 3 45
integers. Some typical quadrats are illustrated in Figure 5.8: the reader is Fisure 5,10 )
invited to identify eure s Figure 3.1
12 where the latter requires a double union of both i and j (Figures 5.10
[13] @iz (= 4=, A3 D and (= 530, | and’5.11)
|
|
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Figures 5.12 and 5.13

[

T T
01 2 3 4 5
Figure 5.14

Figures 5.15 and 5.16
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¢ Dean Hawkes and Richard Stibbs. The Environmental Evaluation of Buildings. 1. A
Mathematical Model, Working Paper 15, University of Cambridge, Land Use and Built
Form Studies, 1969, pp. 12-22.

O = N w A own

01 2 3 45

More complex shapes may be described by employing the operation of
intersection. For example, by removing [3, 4; 3, 5], shown in outline,
from[1,4; 1, 5] we obtain a black L-shaped figure. The figure, L, may

be expressed as the intersection of the larger rectangle with the comple-
ment of the smaller [3, 4; 3, 5], that is,

1,4 3,47
e=[ns]n [35)
In the same way the U-shaped and O-shaped figures may be described

by suitably selecting the appropriate ‘subtracted area’ (Figures 5.12-
5.16). Thus,

These expressions serve to illustrate in formal terms the method of
‘subtracted areas’ used by Hawkes and Stibbs® for putting the plans of
aroom into a computer. These authors do not, however, restrict them-
selves to modular spaces and this is something we shall consider later.

Figure 5.17

b,—
(5]
b
b, —
I I
ay a,
Figure 5.18
bz ]
B N
pj
b, —LB
I |
a; A a,
Figure 5.19
Figures 5.20 and 5.21

by, —

b,—

In general,

a;—1 by—1

eonl-U Uwn

i=a, Jj=b

represents a rectangle with one corner located at (@;, b;) and its
diagonally opposite one at (a,, b,) as illustrated in Figure 5.17. The
rectangle has dimensions of length @, — @; = a, say,and by — b, = b

d al, az — (12 — al — al.
bla b 2 b2 - b1 b
Note that[a 5] 7T is the vector which represents the diagonal of the

rectangle (Figure 5.18). The area of the rectangle is clearly ab, and its
centre of mass is given by the position vector (Figure 5.19)

T
cm[al,az;bl,bzl=["”;"* b“;bz] — .
S =] J—
= J
| | [

i i’ i i
In urban studies and generative design procedures, it is frequently
necessary to compute the distance between two quadrats —in Chapters
12 to 14, for example, we discuss some architectural location problems.
Two distances which are often measured are the rectangular and the
airline distance. The rectangular distance between <i;j) and {i’;j") is
|i —i'| + |j—J'| (Figure 5.20), and the airline distance, by Pythagoras
theorem, is (| i —i' |2+ |j —Jj’ | ?) ¥ (Figure 5.21); while the two
distances between the centroids (A, B) and (A’, B') of two component
spacesare |[A —A’| + |B—B'|and (|A —A’ |2+ | B — B’ [?)*respectively.

x ]
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ay af a, &
Figure 5.22

Figure 5.24
Blocking-in the plan of
the modular EPA test
building at Hemel
Hempstead, Hertford-
shire

132

7 See the Second Report of European Productivity Agency Project 174, Modular Co-
ordination, Paris, OEEC Publications, 1961, pp. 103-9.

A rectangular space [a,, a,; b,, b,]is fixed in location and dimensions,
but we may translate (Figure 5.22) the rectangle to a new position by a
transformation

[ah az] + [P] _ [al +p,a;+p| _[a,a)
by, by q by+¢,b,+¢ by, by’
where the vector[p g]7 carries all points (x, y) to (x + p, y + ¢q). We
may also reflect (Figure 5.23) the rectangle in y = x so that its orienta-

tion is changed, for this we use the zero-one matrix [0 ! ], thus:

10
0 1 a,, az _ bl’ b2 .
1 0f[by,by] |ar,a,

a as ay, Ay
Observe that each column [ bl] and [ bz] of [bl, b2]

is treated as a separate vector for the purposes of vector addition and
matrix multiplication.

In 1954 a branch of the Organization for European Economic Co-
operation, called the European Productivity Agency (EPA), setupa
project on modular coordination? — a subject which we look at from a
mathematical point of view in more detail in Chapters 8 and 9. Part of
the exercise involved various countries in producing test buildings. One

54

48
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24
18
12
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0 6 12 1824 30 36 42
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of the United Kingdom’s test buildings was a research centre consisting
of three separate single-storey buildings designed to provide accom-
modation for general office work, administration and laboratory work.

The building was designed on a 4-inch (100 mm) module, and planned
on a grid based on a multiple of eight times this module, that is, 32 in.
Taking this planning module as a unit we may describe the plans of the
various parts of the design in relation to the reference grid. The simple
block plan of the test building (Figure 5.24) is given by

30, 42 30, 42 0,24 24,30 35,37
[ 0, 21] W [26, 54] Y [0, 12] = [ 6, 8] = [21, 26]'
From this we immediately have the dimensions of the component plans:
they are, in order, (42 — 30) by (21 — 0), or 12 X 21, and by similar
calculation, 12 X 28,24 X 12,6 X 2,and 2 X 5. From their plan
description it is possible to tell that two of the buildings are aligned in
the y-direction. They do so because they share the same x-component
for the units making up their width, namely [30, 42]. We can also see
that these two buildings are separated. Their y-components [0, 21] and
[26, 54] are not contiguous, showing a gap [21, 26] between them.
However, this is the y-component of [35, 37; 21, 26] which can link the
two buildings together if it falls within their alignment. This it does
since [35, 37] lies within [30, 42], that is 30,..., 35, 36, 37,..., 42. Thus the

two buildings are linked. In the same way we know that the remaining
building is linked.

i

26,54)

v u[%] v [31:26]
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8 An introduction to this architect’s work is given by Arthur Drexler, Ludwig Mies van der
Rohe, New York, George Braziller Inc., 1960.

An architect who based many of his buildings on a rectangular and
modular grid was Mies van der Rohe,® the former director of the
Bauhaus at Dessau and an outstanding pioneer of modern architecture.
On coming to the United States in the late thirties, Mies designed the
master plan for the new campus at the Illinois Institute of Technology
in Chicago. The whole block plan for the new buildings was set out on a
12 ft by 12 ft grid. We illustrate the original 1940 plan together with

the numerical description of each building (Figure 5.25). The reader is
invited to identify each building on the plan from its description.

One interesting property of the numerical description is that it tells us,
among other things, which buildings are aligned along the same front-

age. For example, buildings in 1, 4, 8 and 16 are aligned. Their respective
descriptions are

1, 97 [15,497 [57,857 [133,159
31,537 [31,39 | 31,47 |’| 31, 47|
Each description shares one term, 31, in common. All these buildings
‘stand’ on the line y = 31, but buildings 8 and 16 also have the term 47

in common, which shows that these buildings ‘hang’ from y =417.

Now take building 11 and another building from 1 whose descriptions
are

1, 77 [87,105
7,251 120, 26

Translate both building plans to the origin (0, 0). Their descriptions
become

0, 6] [0,18
0,180, 6/
It will now readily be seen that both buildings have the same dimensions,

6 by 18 modules, but that one is orientated at right-angles to the other,
since

0 1[0, 6] _[0,18
1 0][0,18] =[o, 6]

Figure 5.25

Master plan of the 30
Illinois Institute of 20
Technology, Chicago, as
designed by Mies van 10
der Rohe in 1940 0

1 Armour Research Foun-
dation Laboratories

2 Boiler plant

3 Central vault

4 ARF Engineering
Research Buildings

5 Institute of Gas Tech-
nology Laboratory

6 Institute of Gas
Technology Building

7 School of Architec-
ture and Design

8 Student Union and
Auditorium

9 Minerals and Metals
Research Building

10 Electrical Engineering
and Physics Building

11 Lewis Institute

12 Mechanical Engi-
neering Building

13 Chemical Engineering
and Metallurgy Building

14 Chemistry Building

15 Alumni Memorial Hall

16 Library and Admini-
strative Building

17 Civil Engineering and
Mechanics Building

18 Association of Rail-
roads Building

19 Association of Rail-
roads Laboratory

20 Field House
21 Gymnasium and Pool
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[1,7;7,25],[1,9; 31, 53][13, 19; 7, 25]

[19, 27; 58, 63]

[45, 47; 58, 63]

[15, 49; 31, 39], [15, 49; 45, 53]

[29, 35; 7, 25]

[41,47;9,23]

(59, 65; 7, 25]

[57, 85; 31, 47] N [63, 69; 36, 42]'

[53, 67; 58, 63]

[81,99; 53, 57] U [87, 93; 57, 63], [100, 106; 55, 63]

[87, 105; 20, 26]
[72,97;7, 171 N [83, 87; 11, 13]’

[121, 146; 7, 17] N [131, 135; 11, 13]"
[113, 131; 20, 26]

[153,159;7, 25]

[133,159; 31, 47] N [141, 147; 36, 42]'

[112, 118;55, 63], [119, 137; 53, 57] U [125, 131; 57, 63], [135, 159; 59, 63]
[165, 183; 55, 59]

[199, 215; 54, 60]

[175,187;17, 25]
[193,213;11,19] U [201, 215; 19, 25]
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Figure 5.26
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® Albert Farwell Bemis and John Burchard. The Evolving House, vol. 3, Rational Design,
pp. 69-70.

In 1958 Mies van der Rohe built the Seagram Building at 375 Park
Avenue, New York. This is probably the most widely admired high-rise
office building in the world, and one which very much influenced
commercial architecture during the sixties. The block plan, based on
the structural bay grid, of the Seagram is

1,6 2,5 0, 7
[3,6] U [6,7] U [7, 10]'

The reader is invited to complete the plan on the site grid (Figure 5.26).

—
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This method of describing shape may be extended into three dimensions.
Here the two-dimensional quadrat becomes a three-dimensional cubelet.

In 1784 the ‘father of crystallography’, Abbé Haiiy, published a work
entitled Essai d’une Théorie sur la Structure des Crystaux Appliquée &
Plusieurs Genres de Substances Crystallisées in which he put forward the
idea that crystals could be dissected along cleavage lines into a smallest
possible unit, a molécule intégrante, by the repetition of which the whole
crystal could be reconstituted. The shape of the fundamental unit was
chosen according to the particular system of symmetry to which a
substance belonged, and our illustrations show his ideas in the cubic
system using small unit cubelets (Figure 5.27). Irregular three-dimen-
sional forms can be approximated in a similar way.

In the 1930s Albert Farwell Bemis proposed that a cube might be used
as a module in building design and component standardization.® The
idea was not new, although the context of industrial mass production
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Figure 5.27
Two crystal forms built

from Haiiy’s cubelets:

a, the completed rhombic
dodecahedron

b, an octahedron

gave it fresh force. Indeed J. N. L. Durand, Haiiy’s contemporary, .
frequently employs a cubic molécule intégrante in his Legons d’ Archi-
tecture of 1819 as a powerful way of modulating space, while Viollet-le-
Duc, as we have seen, accepted the approach as the natural principe of
architectural organization, observing its use in many Gothic buildings.
For Bemis the building is designed within ‘a total matrix of cubes’, a
rectangular outline of space, large enough to include all the physical
parts of the building. ‘The delineation of the structure within the' total
matrix may be visualized by first removing from within the majcrlx all
the space cubes not comprised in the building volume. The entire
exterior surface thus defined coincides with cube surfaces but not
necessarily with the surfaces of the grand matrix. The voids that o
constitute rooms, doors and windows can then be defined by the elimina-
tion within the house volume of the cubes filling these spaces. The
complete and exact form of the structure is now defined. Tt is divided
into units of volume, cubes of the same size, and all measurements may
be expressed as multiples of the module.” Essentially this is analogous
to the two dimensional system we have just described. Bemis chose a
4in X 4in X 4in cubelet as his fundamental modular Volurqe; a 1.1n1t
employed by Frank Lloyd Wright ten years before in his Cghforman
concrete block houses such as the Mrs George Madison Millard House
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Figure 5.28

The entrance to the
Richard Lloyd Jones
House, Tulsa, Oklahoma,
by Frank Lloyd Wright,
1929
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described in Chapter 3. The basic planning module of this house is
16in X 16in X 16in made up of 64 units into which structural elements
such as the 8-inch wide columns and the 12-inch thick walls nest.

Another house by Wright, for his cousin Richard Lloyd Jones and built
in 1929, adopts the same 4 in® modular volume. Here the basic building
block comprises 100 units, being 20in X 20in X 16 in high. Nowhere,
perhaps, is the striking aesthetic order of this system more dramatically
illustrated than in this house (Figure 5.28).
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In his Encyclopaedia of Architecture, Joseph Gwilt shows the entire
nave of the thirteenth-century cathedral at Amiens contained within a
cube made up of 216 smaller cubes, 23 ft 6 in along each edge (Figure
5.29).

He writes:
‘... there can be little doubt that this simple figure (the cube)
served as a means of measuring the quantities, of either solid or
void, in every period of the constructive arts; certainly none
presents to the architect a better means of comprehending or of

Figure 5.29

Joseph Gwilt’s diagram
of the nave of Amiens
Cathedral

10 Joseph Gwilt (revised by Wyatt Papworth). An Encyclopaedia of Architecture, London,
Longmans, Green, 1881, p. 1016.

measuring quantity, and none is more readily subdivided, or
rendered subservient to the taste of the designer, whatever may
be the architecture his is anxious to imitate.’*°
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But there was very little imitation in Sir Joseph Paxton’s 1851 Crystal
Palace, the Building for the Exhibition of the Industry of all Nations,
and yet, as Gwilt points out, this remarkable building was also based on
a cubic module. Paxton’s units, being 24 ft on each side, were almost
identical to those that rule the nave at Amiens, and they also correspond
to the two-storey-high cubic modules of Mies van der Rohe’s Seagram
Building.
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Figure 5.30
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In three dimensions, the elemental cubelet
i +1
JJ +1|alias[i,i+ 1;j,j+ 1; k, k + 1] alias <i; j; k>
k,k+1
may be defined by the set
{6 0,2)eR?|i<x<i+ Lj<y<j+ Lk<z<k+1,(,j, k) Z?)}

where (x, y, z) is a point in real three-dimensional space, and i, j, k are
integers.

A modular block is a new set created by the union of these cubelets.
For example,

0,1 s
0,1|= U A 136
0,6

block: vector:

a, a, ay, dy as — a;
by, by d|by, by |=|by—b,
Cy, Co Cy, Cy Cy — Cy

MANAN

0,1 6 5
-0 o

j=o0

isaslab,1 X 7 X 6 high, and

0,8 7 6 5
[0,7}= U U<i;j;k>
0,6 i=0j=0k=0

isablock, 8 X 7 x 6 high (Figure 5.30).

In general,
ay, d, a;—1 by—1¢,—1
bbs[ =) | | wsie
C1, Co i=a, j=b k=c,

defines a block with one corner located at (a,, b4, ¢,) and its diagonally
opposite corner located at (a,, b, ¢5). This block has dimensions given
by

ay, ay as — a4
d1 by, by |=|[bs— by
€y, Co Co — (g

where the dimensions are seen as the components of the vector repre-
senting the diagonal of the block (Figure 5.30).

The block form of Mies van der Rohe’s Seagram Building is given by

0,147 [4,107 [4,10 2,12
0, 6lulo, 6|uls 8|uls, 14}
0, 5 5,11 0,42 0,42

Of course, this is just one way of describing the block form. Equally as
well, we could have employed the method of subtracted volumes to
carve the building out of its treble-cube envelope (Figure 5.31).
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Figure 5.31
The development of the
block form of the
Seagram Building (archi-
tect: Mies van der Rohe),
New York, by the ‘sub-
traction of volumes’ from
a notional building en-
velope, I, made up of
three cubes
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The notation used so far limits description to modular spaces, neverthe-
less the approach has served to introduce some basic operations of set
theory and to illustrate a particular way of organizing architectural
space within a matrix of cubic molécules intégrantes, a method which has
been used by architects with telling aesthetic effect. In Chapter 8 we

look at problems of dimensional compatibility and modular coordina-
tion, but here we are more concerned with the description of shape.

Let us now relax the constraint of modularity.

i
T
o

Figure 6.1

6 Stacking, nesting and fitting

Consider the set of points, H,, such that if x € H,, then x is a real
number greater than or equal to a number a,, that is,

H, = {xeR|a, <x}.

This statement may be shown (Figure 6.1) as a set of points along a line.
Effectively, the statement divides the line representing the real number
system, R, into two halves, one half being the set of points in H; and

H, H, U H,

3
Y
o as 0 a a,

the other comprising points representing elements in its complement,
H,’, where H; U H,’ = R. For this reason H, is called a halfline.
Consider now the halfline H, defined by

Hy,={xeR|x <a,}.

Suppose that a; < a,, then the intersection of the two halflines H; and
H, defines an interval of points A given by

A=H,NH,={xeR|a, <x <a,}.

Such an interval is usually abbreviated [a,, @,] and thjs is the notation
we adopt here. We shall also speak of the component [a,, a,] which fills
the interval of that name. From the context, it should be clear whether
we are talking about the interval or component. The points a; and a,
are called the extremum points. The length of the interval is a, — a,, and
this is the element of the 1 X 1 vector d [a,, a,] = [a;, — a,]. We shall
denote the length of 4 by | 4 |.

Two intervals A = [a,, a;] and B = [b,, b,] are said to be identical if

a, = b, and a, = b,. Then we write 4 = B: such identical intervals
obviously have equal lengths, but there are intervals with equal lengths
which are not identical. For example, two intervals 4, = [x;, @ + X;]
and 4, = [x,, @ + x,] have equal lengths, g, but their positions differ

if x; is not the same as x,. Two components (or intervals), 4 and B,
are equal if | A | = | B | whether or not a, is equal to b,, and a, to b,.
For equality we write 4 = B. In the example, d 4, =d 4, =[a] and
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this is a vector of length @ in R. Components of the same length, but
of no fixed addresses, are said to be free. There is a clear analogy
between free components and vectors: both have the property of
having length without having a definite location. We denote all free
components by 4 if they are equal to the fixed component 4. Thus

A=[x,| 4|+ x]forall x e R.

We may fix 4 by giving x a definite value such as p, say. We then write
A, for A4 to show that the component is now fixed and located at p.

It may help to visualize a component, [a,, a,] as a fine hollow rod of
length a, — a; which is threaded onto a line of real numbers and
positioned at a, at one end and at a, at the other. Each rod has slightly
elastic sides so that any one rod may be slipped over or inside another.

In general, two components 4 = [a,, ;] and B = [b,, b,] are

either disjoint, that is separate, or they overlap. There are five possi-
bilities (Figure 6.2), and there are seven distinct ways in which com-
ponents may be joined so that their ends abut (Figure 6.3). Components
may be separate, may partially overlap, may completely overlap so that
one is contained within the other, or they may be identical. Components
may be joined externally one to the other, in which case they are said to
stack, or internally in such a way as to nest or, perhaps, to fit when they
are identical. If a set of components 4,, 4,... 4, stack to fill an interval
Bthey are said to pack the interval: a situation analogous, for example,
to the problem of assembling building components of given widths to
make up a wall section.

Formally, 4 N B5£0,if a, > b, and b, > a,, and then
A U B =[min {a,, b, }, max {as, b3}
A N B =[max {ay, b, }, min {a,, b,}]
where
aifa < b
min {¢,b} ={a=>bifa=0>
bifa>b

aifa>b
max {a,b} ={a=>bifa=">
bifa < b.

Figure 6.2

Figure 6.3

\
Y

Condition Type of overlap Graph
1. fANB=4¢@ none; disjunctive 4
e = o
but,if A N B£0: B
: A
2 AZ B BZ A partial I}
B
3,4. AC B,BC A inclusive ——lil—
(4 cC B,BZ A) B
A
5. ACB,BCc A identical — [ ——
B .
v
Condition Type of conjunction Graph
a A a,
AZ BBz A
1. ag = b]_ bl B bz
stacking o A a
2. 111 = ba
b, B b,
a, A a,
b e —— |
(Ac B,B A4) b, B b,
30)- ay =y nesting a A ay
— —{— =}
4,(6). a, = b, G B 5
ACB,BC A o A o
a=b - ] -
7. { fitting b - b,
a, = b,
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Packing in one dimension amounts to the task of selecting from a set of
free components particular combinations which can be assembled to
make up the length of the interval to be packed. If the set of permitted
lengths is unrestrained within the real number system then packing
accords with the everyday laws of arithmetic, but if, as we shall discuss
in Chapters 8 and 9, the set is restricted to multiples of a module or to a
set of numbers belonging to some proportional series then packing
becomes more difficult.

Packing, even of simple rectangular spaces, is far more complicated in
two and three dimensions, yet this is an essential task of architectural
design: how to arrange rooms within a given plan form, or their volumes
inside a building shell or envelope. The problem is not confined to
architecture and is to be found in designing modules for electronic
equipment and the economic cutting of sheet materials into smaller,
but various, rectangles. While graphic representation and descriptive
geometry have served the designer well and have much to recommend
them, systematic and computer-aided design methods often require
quantitative, numerical descriptions of two- and three-dimensional
spaces. To move into these high-order spaces we need to introduce the
idea of a product set.

A pair is a set containing two elements. Usually order is of no impor-
tance in a set, but sometimes we want to take order into account.

Recall the example of putting on socks and shoes in Chapter 2: as a

pair {socks, shoes} = {shoes, socks}, but as a direction for dressing
(socks, shoes) put in that order is much sounder advice than the
suggestion (shoes, socks). Such a pair is said to be ordered, and in
general when a set has a specific order it is written with brackets rather
than braces. An ordered pair (a, b) consists of two elements @ and b so
that a is the first coordinate and b is the second coordinate.

The product of two sets 4 and B is a new set consisting of all ordered
pairs (a, b) where a € A and b € B. It is denoted by AB. That is,

AB = {(a,b)| ac A, beB}.

Thus, taking the sets 4 = {1,2,4}and B = {2,3} we have

AB = {(1,2), (1,3), (2,2), (2,3), (4.2), (4,3)}.
The generation of ordered pairs becomes obvious in tabular form

41 2 4
B
3 13) 23 @3
2 | 1) 22 42

and this suggests that products may be mapped onto points in two-
dimensional space using cartesian coordinates. For this reason the

operation is known as the cartesian product. Note that the product

is not usually commutative, for example,

BA = {(2,1),(2,2), (2,4), 3,1), (3,2), 3,4) }
so that AB = BA.

Given two components 4 and B it is clear that we need to inspect and
compare the values of the extremum points a,, a,, b, b, before we can
tell whether the components are disjoint, or whether they nest, stack or
fit. It is a matter of looking at the pairs in the product set

{a1,a5} {b1,b2} = {(a1,by), (@1,by), (@,b1), (a5,05) }
= {(a;b;) |i=1,2andj =1,2}.

A neat way of doing this is to consider a set of 2 X 2 matrices
E = {[e;;]} whose elements take the values 0 and 1 according to the rule

o l,ifai —b5=0
€ =10, ifa; — b; 0.

The numbers 1 and 0 are binary values corresponding to the statements
‘it is true that components 4 and B conjoin’ (1), or ‘it is false’ (0).
Assuming 4 and B are not degenerate, there are just six possible zero-
one conjunction matrices in E. These matrices are like codes which tell
us the type of conjunction, if any, existing between the two components.

149



Q

\

_

)

AN

The set, E = {O, E4;, Ey,, Eq 5, E,,, I}, of conjunction matrices is shown
below.

Number of ones Conjunction matrix Ee¢E Conjunction type
none [g g] (0] none, disjoint
one [é g] ’ [g (1)] Ell’ Egg nesting
one [g (1’], [(1) g] E,;, E,;  stacking

10 . . .
two [ 0 1 ] I identity, fitting

The cartesian product RR, or R? is the set of all points (¥, y) in two-
dimensional space with real coordinates x and y. Similarly RRR, or R3,
is the set of points (x, y, z) in real three-dimensional space. This is why
we have used the shorthand R, R? and R?2 for one-, two- and three-
dimensional space previously. It should be observed in passing that R3,
say, does not of itself imply a rectangular coordinate system, but this is
the only system we use here.

Earlier we looked at the halflines H, and H,. What meaning can be
given to the cartesian product H, R ? By definition

H.R={(x,y)eR?®|xeH,yeR}and H, = {xe R|a; <x}

so that x may take any value greater than or equal to a,, while y is
unrestricted within the set of real numbers. H; R, then, defines what we
call a halfplane. Similarly H,R is a halfplane (Figure 6.4). The inter-
section of these two halfplanes

H,RN H,R=(H,N H)R=AR

by

I 0

b,

.

2
.
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since H; N H,is the interval A = [a,, @,]. The intersection is thus a
band of width a, — @, in the x-direction and of infinite length in the
y-direction.

The product RB where B = [b,, b,] may be represented by an infinite
band running parallel to the x-axis. The intersection of the band AR and
the band RBis a rectangular area which we shall call a panel (Figure 6.5).
More briefly, the panel may be defined directly by the cartesian product
of its two components 4 and B

AB={(x,y)e R?*|xeA,yeB}.

To be specific we may write out 4B more fully as

o &
[Zi’ b:] or [a;, ay; by, byl

as we have done already for modular rectangles. Whereas in the modular
case we only permitted integer values of a,, a,, b;, b,, now we allow
them to take any real value.

Earlier we defined a free component 4 as one which is equal to
component 4, that is to say 4 is a component having the same length,

| 4 |, as 4 while remaining free in regard to its position. Consider the
fixed panel 4B and the free components 4 and B which correspond to
its sides. We shall say that the free panel AB is equal to AB and we see
that it is a panel of equal dimensions and orientation, but of unspecified
location. The free panel AB is a translation of AB,

— | dwda x| _|aitxa+x 2
A8 = [bl’ b2] = [y:l o l:b]_ + », b, —{—y]’forall (x,y) e R%.

On the other hand the free panel B4 is an isometric transformation of
AB which preserves length but not orientation and position. Thus

— 0 1 a19a2 - b17b2
BA—[I 0] [bl’b2]_[alaa2
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AB=CD AB=CD AB= CD Figure 6.9 y - disjoint y —aligned y —fitted
‘ The thirty-six distinct
/%' ways in which two panels —l I I
CcD < may be disjoint, aligned - D
- in one, two, or three £ D
/ / X directions, or fitted Z% D U
AB,CD AB A PY: b l n
| [
(01 o) (07 Eu) (0’ Ezl) (O’ Ell) (0’ E22) (01 I)
Figure 6.6 is the reflection in y = x of 4B, and B4 is then any translation of BA. | ]
In general, we shall say that two panels 4B and CD are equivalent (%) if
{l4],|B|}={ C|,| D |} We may summarize these conditions as D :
follows (Figure 6.6):
(E127 0) (El‘zs Em) (Elza E21) (Exz, Ell) (Elb E22) (EIZ’ I)
Identity: AB= CD, if (4, B) = (C, D)
Equality: AB=CD, if(|4|,|B))=(C]|,|D}|) —B
Equivalence: AB-=CD,if {|4|,|B|}={| C|,| D|}. [ UIU ‘H
Two panels 4B and 4B are clearly equal to AB but they are not com- - D
pletely free. They are, in fact, constrained within the bands 4R and RB g
respectively (Figure 6.7). Normally, two panels 4B and CD cannot be %D (Ex, 0) (Exs, Ex) B, ) (B, Br) (e, Eo)  (Bar, D
combined to form another rectangular panel, thus AB U CD is not o D
usually a panel, although AB N CD is (Figure 6.8). For testing the “i| H
Figure 6.7 AR D 1 J
AB | E,0)  (EpE) (EnE) EpE)  EpEw)  EnD
AB AB AB RB [
| (E22’ 0) (E22$ El2) (E22$ E2l) (EBE’ Ell) (E22! Ezz) (E‘32’ I)
=
Figure 6.8 g
x | [ ]
cD CcD L I 0) (LE;) @ Ez) LE;) (I, Ey) (18]
AB U CD AB (N CD
conjunction of panels we may use an ordered pair of conjunction
4B AB matrices comprisinga 2 X 2 matrix E from the set E = {0, Ey;, Eqp, Eyo,
E,;, I} for the x-component and another matrix from E for the
y-component. We shall call such an ordered pair the conjoint of panels
ABand CD. The ways in which the panels may be disjoint, aligned or
fitted are given by the thirty-six possible conjoints in £2 (Figure 6.9).
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1 Nicholas Bullock, Peter Dickens and Philip Steadman. A Theoretical Basis for Univers y
Planning, University of Cambridge, Land Use and Built Form Studies, 1968, pp. 117-34.

2 Richard Stibbs and Philip Steadman. ‘A Computer Aided System for Architectural
Design and Analysis’, Cambridge Research, vol. 2, no. 1, 1968, pp. 18-22.

3 Jurgen Joedicke. Office Buildings, London, Crosby Lockwood, 1962.

From this illustration it is clear that two panels can only be joined
together to make another if they exist within the same band, that is if
A= C or B= D. The conjunction then follows the rules of joining two
components together. Thus if 4 = C, say, and if, for Band D,

E ¢ {E;, E;; } the two panels stack; if E € {E,;, E,, } they nest; and if
E =1, thatisif B= D, they fit (Figure 6.10).

CD
% = —————
AB o AB,CD
CD
e ——
Figure 6.10 .
If a panel is now thought of as the floor plan of a rectangular room, the
stacking of panels is seen to be analogous to the problem of ‘band-
planning’ in architectural design. In this particular class of problem
described by Bullock, Dickens and Steadman,* and by Stibbs and
Steadman,? rooms are arranged within a rectangular building shell in
parallel bands along a corridor. Clearly where there are a large number
of rooms of roughly comparable size (as, typically, in an office building),
then it is natural to distribute these in band arrangement: indeed,
a b w
Figure 6.11
Band planning: l__/—————""—’_-——’—

a, one-band with rooms b, two-band with rooms
on one side of corridor on both sides
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d, four-band with two

corridors serving four
‘ sets

T, three-band with two
corridors serving three
sets of rooms

—>

Figure 6.12

Joedicke?® classifies some office buildings in terms of the number of
bands, or zones, occurring in the plan (Figure 6.11).

The computer-aided method of band-planning proposed by Stibbs and
Steadman involves a ‘floating room’ which has similarities with our free
panel. The computer program allows the designer to fix a number of
bands on the cathode ray tube by means of a light-pen. The floating
room automatically appears in one of the bands. The room has an
x-component A, = [a,,, d;,] and takes up the y-component of the band:
itis located in B; = [byy, b12], say. The room is then moved by means of
the light-pen to the band in which it is to be located. In our terms the
component A, is translated to a new position A, where its product with
a new band B,, say, is formed to make the panel 4,B,. The room may
not be the right width and the designer uses the light-pen to widen or
narrow the room on its right-hand side. This is equivalent to changing
the component 4, to

Ay = a1, a55 +x]
where x is the length to be added or subtracted (Figure 6.12). Once one

room is fixed a new floating room is created with the same x-component
as the last fixed room. The procedure is then repeated. The program was
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Figure 6.13

A six-band plan partially
filled with rooms, some
with identifying code
letters, as displayed on a

cathode ray tube

Figure’6.14
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written as an interactive graphic method of putting a building plan into_

a computer where various aspects of its performance — circulation,

Tighting, heating and cooling loads — could be assessed (Figure 6.13).

Using the notation [y, a,; by, b,] for the panel 4B we are able to
describe its edges and vertices in terms of products of the sets {a;, @, }
and {b,, b, } and their subsets. The set of all subsets of a set is called its
power set. The subsets of {a,, a,} are {0}, {a:}, {a,}, {@1, as}. Let

A, = {a,}and 4, = {a,}. The power set, P (4), of 4 is then the new set
{0, A,, Ay, A}. In the same way we may define the power set, P (B), of

= {b,}. Consider the

Bas {0, B,, B,, B} where B, =

cartesian product P(4)P(B). Thxs is the set

{0, ABs AB].’ ABz, A1B9 AZB, AlBls AIBZ, A2Bl’ A2B2}'

P(A)P(B) =
- A;B, AB, A.B,
AB AB A;B
B
A,B, AB, A,B,
0 |

Figure 6.15

b,

b,

Notg that 0X = X0 = 0 no matter what X is. There are nine non-empty
sets in P(4)P(B) and these correspond to the panel, its four edges and its
four vertices (Figure 6.14). We write these in full as

Panel Edges Vertices
Sl ] B S AIBI=[251]
aB,= |5 ] 2= ]
as=[, 5] 4 =[ {
=, ] 2= 7]

The vertices are located from the origin by the position vectors

[a; 607, [ay b,)T,[a, b407,[as b,)T. The edges are delineated by
the vector cones which subtend them, and so is the panel itself (Figure
6.15).

The schematic plan of the ground floor of one of Le Corbusier’s
Maisons Minimum can be written down in notation form. There are
four rooms. The dimensions are given in units of 500 mm and measured
roughly (for the purposes of the exercise) to the centre lines of the walls.

157



//‘\

Figure 6.16
The assembly of a four-
room plan
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/

R,

R,

R,

R,

R,

Figure 6.17
3
2
1
0 1

4 See, for example, P. C. Gilmore and R. E. Gomory, ‘Multistage Cutting Stock Problems
in Two and More Dimensions’, Operational Research, vol. 13, 1965, pp. 94-120.

0, 61 , _[610 . [6107 , _[10,16
Rl—[o,11]’R2_[o, 5]’R3—[5,11]’R4_[ 0,11]'

What can we say about the room arrangement ? First we may note that
d R, =d R, =[6 11]7 so that the two rooms are equal. They also
occupy the same band RB where B = [0, 11].

They are, however, disjoint in the x-direction. The room R, shares the
fagade y = 0 with R, and R,, while R, shares the other fagade y = 11
along which R; and R, are aligned. We also see that R, and R; occupy
the band AR where 4 =[6, 10]. Also, since their y-components [0, 5] and
[5, 11] conjoin at y = 5 we see that together they make a new rectangular
space

6,10
Bl Be= [0 11].

Now we see that this new space also occupies the band RB and that R,
conjoins R, U Rgatx =6and R, U R;conjoins Ry at x = 10. All
together the four rooms fill the rectangular plan P = [0, 16; 0, 11].

The assembly of rooms may be illustrated in diagrammatic form
(Figure 6.16). The procedure breaks down if the panels are arranged so
the “guillotine cuts’ cannot be made. This is a cut which when started
on one side of a rectangular assembly must traverse in a straight line to
the other side. The term arises in connection with interesting problems
related to the cutting of sheet materials in order to minimize wastage.*
Consider the following assembly of panels,

2,31, 0,27, [L2], [0,1], [L3
Pl_[o,z]’Pz‘[0,1]’})3—[1,2]’P4‘[1,3]’P5_[2,3].

Letus forma 5 X 5 array of conjoints for each pair P; and P;. (It is, of
course, much easier to sketch out the assembly from this description
and a 3 x 3 grid is provided (Figure 6.17) for the reader to do just this.)
Nevertheless, we shall proceed, saving effort by computing only half the
array of conjoints since this will suffice for our purpose:
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Figure 6.18
The assembly of a five- |
room plan which cannot /
be ‘guillotined’ y
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P, P, Py P, Hs
P, : (E12, Eqy) (Eqs, Eyp) (0,0) (Ess, Eyy)
P, : : (Egs, Eyy) (Eqq, Eqy) (0,0)
Py : (Eyp,Eqy)  (Eyqy, E;)
P, : (Egy, Egp)
Py J

We note that P, and P, are disjoint, as are P, and P;, but that P, and P,,
P, and P, P, and P,, P, and P;, P, and P,, and P; and P,, Py and P;, and
P, and P; are all aligned in two directions. No pair, however, fits in any
direction and we are unable to stack the panels. Panel P; is aligned with
all four panels P, P,, P,, Ps. Let us take panel P, and nominally ‘cut’ it
into two parts @, and Q..

0,17 _fo,1 0,17
[1’ 3] == [1,2] U [2, 3] - Ql U QZ‘
Now Q, stacks with Py, and Q, stacks with P;. This ‘cut’ allows us to
assemble in sequence all the remaining panels. The difficulty occurred

because the original assembly could not be dissected with guillotine
cuts (Figure 6.18).

In this chapter we are mainly concerned with the description of shape
and not with problems of dissection or assembly. Some issues related to
these problems are discussed in Chapters 10 and 11. One of the difficulties
encountered in numerical description of shape for architectural design
purposes is that it is oo precise. An architect works within a range of
tolerance permitted by the client’s programme. Rarely will this say that
aroom must have precisely such and such dimension, or that its area or
proportion must be exactly a given amount. Sometimes the brief will
specify that one room must be next to another, but that is not the same
thing as saying that the two rooms must be aligned in the way we have so
far described. No, there is considerable looseness of fit about combina-
torial problems in real architectural design, and man’s judgement
remains highly competitive against numeric, or even heuristic, computer
methods. But for many design tasks, particularly where the architect, or
engineer, wishes to test the performance of his proposal for one purpose
or another, the computer is invaluable: and consequently the numeric
description of the building geometry is virtually unavoidable.
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Some degree of looseness can be expressed by the notation we have used.

For example, the set of panels XY defined by

o= (33
Y1, Ve

is the infinite set of panels whose area is larger than @ and less than b.
In particular,

0,x
wr={[o}]
is the set of panels which share a corner at the origin (0, 0) whose area
lies between @ and b. Some of these panels can be extremely thin and

4 < (xy — X1) . (v — y2) < b, fora, b >o}

a<xy<b,fora,b >0}

excessively long. In practical terms we would probably want to constrain

the proportions of the panels within useful limits. Consider the set

xr={[o}]

This is a set of panels each of which lies within the proportion l:a.

x <ay <a?x,fora > 1}.

For example, let us suppose the client wants a room not smaller than
9 m?and not bigger than 16 m? (Figure 6.19 a—). At the same time the
room’s length is not to exceed twice its width (Figure 6.19d-¢). These
requirements may be expressed formally as

0, x
= { [0, y]
and they can be shown graphically as a set consisting of all vertices
(x, y) which satisfy the constraints. There may even be additional
requirements related to orientation; that, for example, the dimension in
the y-direction should not exceed 4-5 m, and in the x-direction should
be less than 3 m (Figure 6.19 f-g). The intersection of all the sets of
requirements provides the solution set within which an acceptable
answer may be found. The client may wish to define the solution set yet
more narrowly by adding the constraint that the perimeter, 2 x+»),
should not exceed 14 m (Figure 6.19 h-i). Notice that some previous
restrictions have been made redundant by these later requirements. It is

9 <xy <16, x <2y <4x}

——

soh

L L .

(=]

Figure 6.19

Constraints on room
area and shape limit the
permissible solution set
(shaded):

a, b, area

d, proportion

f, dimensions

h, perimeter

c, €, g, i, the accumula-
tion of previous con-
straints




Figure 6.20

Figure 6.21
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not unusual that an architect’s brief includes logically redundant
specifications, stating two needs where if one need were answered the
second would be satisfied automatically. But such a situationis a
happy one: far more often do requirements lead to contradiction and
conflict, and these may only be resolved by practical reasonableness.

The proximity of two panels may be dealt with by introducing the
concepts of circular neighbourhood of a plane set of points A and what
the mathematicians call the distance between two bounded sets of points.
The circular neighbourhood is a mapping of 4 onto another set which
we name N (4, r) defined by

N4, r) = U N(X,7)

XeAd

which tells us that the circular neighbourhood N of A4 of radius r is
equal to the union of all circular regions of radius r and centre X for
every point X existing in 4 (Figure 6.20).

We will say that two sets 4 and B are proximate within a distance r if

N(4,r) N BFD.

That is to say, the neighbourhood of one intersects with the other in a
non-empty set (Figure 6.21). The minimum value of r for which the

N(A4,7r)

A B

intersection is non-empty, measures the closeness of the two panels. The
distance between two bounded sets 4 and B is defined as the maximum
of r, s for which

N(,r)N B=B,
N(B,s) N 4 =A.

Figure 6.22

Figure 6.23
The circular neighbour-
hood of a block

N (B,s)
N(B,r)

N(@4,r) A B

Effectively, the distance is the minimum radius of neighbourhood which
ensures that both sets are contained by each other’s neighbourhood
(Figure 6.22).

The circular neighbourhood of a rectangular panel, or block (Figure
6.23), is a styled-up version with rounded corners. For our purposes we
may modify the mathematician’s neighbourhood concept in such a way

as to define a rectangular tolerance zone around a panel. We do this by
mapping a panel 4B onto a new set T (4B, ) given by

T(AB,t) = T(X,?)

where T' (X, t) is a square of semi-width # and centre X. This new setisa
panel whose width and length have been increased by an amount ¢ on
all four sides, thus

a, —ta,+t

T (4B, 1) = [bl Bl

Jr>o
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Figure 6.24
Dimensioned diagram of
the ground plan of one of
Le Corbusier’s Maison
Minimum (cm)

Figure 6.25

The generation of the
ground plan of the
Maison Minimum using
set-theoretic concepts
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We may use the same definitions as above for proximity and distance.

It will be clear that there is a close parallel between proximity and
positional tolerance, where a manufactured component such as a door
has to fit into a door opening. But proximity is also useful in building
studies where some measure of which rooms are near to which is re-
quired. Such studies are often related to problems of allocating activities
to rooms within a building in such a way as to reduce circulation. These
‘looser’ concepts of proximity and distance may be useful, for example,
in tempering computer-aided design methods which rely on the exag-
gerated precision, yet oversimplification, of distance between the mean
centres of individual spaces (see Chapter 14). The measures discussed
above are more responsive to changes in room geometry - size, shape,
orientation, and location — and seem to accord with our commonsense
understanding of distance where relations such as ‘quite near to’ and
‘in the neighbourhood of” suffice.

Let us return, now, to the ground floor plan of Le Corbusier’s Maison
Minimum (Figure 6.24). The overall plan itself measured to the outside
wall is a rectangle : let us name this I. There are four ‘rooms’ which,
measured to the inside walls, we call R;, R,, R, R,. R, is a car port, R,
and R, are utility rooms and R, is a covered family area. The main
living-rooms and bedrooms are on the first floor and can be reached by
means of an external staircase. There are four doorways and these we
label Dy, D,, D,, D,. The elements of the ground plan may be expressed
numerically. The measurements are in centimetres.

Overallplan: I =0, 825; 0, 550]

NR; (

9

ND;

Rooms: R, =[25,275;0, 550]
R, =[300, 500; 25, 240]
R, =[300, 500; 250, 525]
R, =[525,800; 25, 525]

Doorways: D, =275, 300; 400, 485]
D, =[415, 500; 240, 250]
Dy = [500, 525; 65, 140]
D, =[800, 825; 25, 140]

Previously, when we measured to the centre line of the wall, R, and Ry
conjoined. Now we see that they are still doubly aligned in the
x-direction since they share the same x-component [300, 500] but there
is a gap of 10 cm between the two y-components [25, 240] and [250, 525].
A tolerance zone of 10 cm around R, changes its y-component from

[25, 240] to [15, 250] and we see that R, conjoins R, and R; along

y = 250 within a tolerance of 10 cm (the wall thickness). The distance
between the rooms Ry, R,, Ry and R,, as we have defined it, is 500 cm.

The plan of this building may be generated (Figure 6.25), as it is within
a computer by the method of ‘subtracted areas’, by intersecting

the complement, R;’, of each room and the complement, D,’, of each
doorway with the overall plan I. Thus the ground plan, Q, without
doorways is

4

Q=1IN R',where R = U R;

i=1

while the plan with doorways, P, is

4

P =0Qn D, where D — U D,.

i=1

ND; NnD; nD;
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Figure 6.26

Before we do more, let us pause to consider the extension of cartesian
products into three dimensions. The product, 4B, of two components
A and Bis a two-dimensional panel. The product, 4BC, of three com-
poenents A, Band Cis a three-dimensional block.

ABC = {(x,y,Z)ER°|x€A,y€B,ze C}

To be more specific we may write ABC out fully as

ala ‘12
by, by | o1 [ay, ag; by, by; €4, €4)

€y Ca

following the notation we have adopted already in one and two
dimensions.

We may think of any two-dimensional set as the cross-section of an
extrusion in three dimensions. Thus a set M, representing the cross-
section of an extruded bronze mullion from Mies van der Rohe’s
Seagram Building, may be projected into three dimensions by forming
its cartesian product with a one-dimensional set L (Figure 6.26). In the
same way we may raise the walls of Le Corbusier’s ground plan, Q, into
three dimensions by forming the cartesian product QS where S is the
z-component, [0, 220], representing the storey-height of the ground
floor.

Three of the door openings, D,, D,, D,, are not so high; their z-com-
ponent is [0, 200] leaving a 10 cm-deep lintel between the doorhead and
the ceiling. There are two other openings in the design (Figure 6.27).
One is a clerestory light in room R;, and the other is a large void beside
the ‘doorway’, D,. These two openings and the doorways may be
described as three-dimensional blocks.

Doorways: W, = [275, 300; 400, 485; 0, 200]
W, = [415, 500; 240, 250; 0, 200]
W, =[500, 525; 65, 140; 0, 200]
W, =[800, 825; 25, 150; 0, 220]

Openings: W; = [300, 500; 525, 550; 185, 220]
We = [800, 825; 150, 525; 30, 220].

Figure 6.27

The intersection of T = QS, the three-dimensional projection of tlhe
rooms without openings (Figure 6.28), with the comp.lements, W; , of the
openings generates the three-dimensional representation of the design, U,

6

U=Tn W, where W = U w..

i=1

To illustrate set union in three-dimensional space we may complete the
concrete form of the design by ‘adding’ the small 5cm X 5 cm lintels
over the openings W; and W, and over the entrances to the car port.
The lintels may also be described as blocks.

Lintels: L, = [820, 825; 25, 525; 215, 220]
L, = [300, 500; 545, 550; 215, 220]
Ly =[25,275;0,5; 215, 220]
L, =[25,275; 545, 550; 215, 220].

The final concrete shell, ¥, is the union of T with all the lintels, L, that is

4
V=UUL,where L = UL,..

i=1

a
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Figure 6.28

Figure 6.29
Cross-sections through
the Maison Minimum
generated by the inter-
sections of sets of points
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Architects often draw vertical sections through their buildings to show
their structure. We have already seen how the product of a two-dimen-
sional section with a component produces the solid extrusion in the
example of Mies van der Rohe’s bronze mullion. If we intersect the shell
of Le Corbusier’s house, ¥, with a plane we obtain a section (Figure
6.29). For example, planes A, R? where A, is the degenerate x-component
[450], and RA,R where A, is the degenerate y-component [450] give us
two cross-sections C,; and C, through ¥ on intersection:

C1= Vﬂ A1R2
C2= Vﬂ RAzR.

Let us reflect. To generalize, we have introduced a component

A = [a,, a,]in one dimension R, a panel AB = [a;, a,; b, b,] intwo
dimensions R?, and now a block ABC = [a,,a,; by, bs; ¢4, ¢5]in three, R®.
The pattern is clear. We originally considered a component as the
intersection of two halflines, H; N H, = A; a band as the intersection of
two halfplanes, H.R N H,R = AR, and a panel as the intersection of two
bands AR N RB = AB. In three dimensions we have halfspaces — all the
points which lie on or to one side of an infinite plane dividing space

into two halves — and the intersection of two halfspaces, H;R? N H,R?
— AR?,is a slice of space bounded on either side by two planes. A block
is the intersection of three such mutually perpendicular slices, that is,

ABC = AR* N RBR N R*C.

Any set of points formed by the intersection of halfspace is said to be
convex. We shall take a brief look at convexity when we consider non-
rectangular forms, but here it is worth noting that components, panels

and blocks are examples of convex sets.

Earlier we defined identity, equality and equivalence for a panel, and we
may extend the definition to blocks 4BC and DEF (Figure 6.30). Thus,
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ABC = DEF

Figure 6.30

>
N

ACB

CAB

CBA 3
BCA @
BAC ;
Figure 6.31
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Figure 6.32

ABC = DEF

ABC < DEF-,

Identity: ABC = DEF, if (4, B, C) =(D,E,F)
Equality: ~ ABC = DEF, if(|4],|B|,|C|) =(|D| |E|,| F|)
Equivalence: ABC = DEF,if {|4|,|B|,|C|}={|D|, | E|,| F |}

We may correspondingly define a free block 4BC as any block of equal
dimensions and orientation as A BC but of different location. As before,
a free block is any translation.

a,, ay x a,+x,a,+ x
biuby |+ |y |=|bit+ b+ y| '
C1, Cg z it 260342

Equivalent blocks, on the other hand, have equal dimensions but do not
necessarily share orientation or location. Equivalence permutes 4, B
and C, so that there are six equivalent blocks including the identity:
ABC, ACB, CAB, CBA, BCA, BAC (Figure 6.31). Note thatthe 3 X 3
zero-one permutation matrices which we discussed in Chapter 2 do
indeed produce the equivalent blocks (remember each column of a
block must be treated as a separate vector):

1 0 0)[ap,a.] [ai,a,]
I == [el ea 63]: 0 1 0 bl’ bz = bl’ bz = ABC
[0 0 1f|c,ca] Le1scal
1 0 0[ay,a,] [a,,dy | Figure 6.33
P132 — [el es e2]: 0 0 1 bl’ bg = cl, c2 = ACB |
[0 1 0]|cy, 2| |b1bsl
[0 0 170[ana;] [cwea]
P231 = [ea ea el]: 1 0 0 bl! bz = al’ az = CAB
[0 1 O0]fcy,ca] |[D1n,be

and so on for the remaining permutation matrices [e; e, e,], [e; e; €]
and [e, e, e;]to give CBA, BCA and BAC.

Like panels, the union of two boxes is not necessarily a third (Figure
6.32), but their intersection is. Indeed, one of the fundamental theorems
of convex sets states that the intersection of any two convex sets is also
convex. The conditions under which two blocks may be aligned or
conjoined can be expressed by an ordered set of three 2 X 2 conjunction
matrices from the set E shown on page 150. There are six elements in E,
and the cartesian product E?® gives us all the ordered sets of three, or
conjoints, that are possible. We see that there are 62 = 216 ways in which
two blocks may be aligned or conjoined in space. The only situations in
which two blocks may be joined to form a third is when they are in
extrusion (Figure 6.33), that is to say, when at least two out of the three
elements in their conjoint are the identity matrix I. There are three
positions in the conjoint for the remaining element, and that can take
one of four values — E,;, Egg, E, 5, E,; —if the blocks are to nest or stack.
Altogether there are thus 3 X 4 = 12 ways in which two blocks may
nest or stack and one way, of course, in which they fit, (I, I, I). Assembling
blocks to form others is no easier than stacking panels, while the same
problem of guillotine cutting, which we discussed earlier, exists. The
names of the faces, edges and vertices of the block ABC are given by
forming the product of the power sets P(4), P(B) and P(C) as we have
done before for panels. Recall that P(4) = {0, 4, 4;, A,} where

A, =[a,)and 4, = [a,] are degenerate components. P(B) and P(C)

are similar. These elements are illustrated in Figure 6.34.

b
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Block Faces Edges Vertices
. P(A)P(B)P(C) — {0, ABC, ABC,, AB;C;, AB,Cy,
ABCZ’ ABlcz’ AIBICE,
AB,C,  AB,C,, A,B,C,,
AB,C, AB,C,, A,B,C,,
A,BC, A,B,C, AyB,C;,
A,BC, 4,B,C, A3B,Cs,
A:B,C,  A3B,C,,
A,B,C, A,B,C,}.

ABC,,
, A,BC,,
Figure 6.34
The elements of a block — A zB Cn
the solid, planes, edges, A,BC,,
and vertices — generated
by the product of power

‘We may express a block, its faces, edges and vertices in full, typically, as

b L L

R

sets, P(A)P(B)P(C)

%4, Xy
Block: K =|y,, y,:|.
| | 21, Zp
~ [ x

Face: K;=|y, yz], where x € {x;, x5}
| 23, Zg

ROBOGRRT

x
Edge: K,=| y | whereye {y;,5:}.
| 21, Z5

Vertex: K, =| y |, whereze {z;,2,}.

|z

Once again they are seen to have a one-to-one correspondence with
cones of vectors from the origin.

The description we have employed of rectangular forms shows a strong
pattern: the kind of pattern incorporating symmetry, permutation and

! combinatorial logic which we hope demonstrates the strong affinities
that structure in the arts has to mathematics, and mathematics has to
the arts. The peculiar strength of mathematical structure allows
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mathematicians to contemplate geometries in unfamiliar realms and
unseen dimensions. For example, we are now in a position to describe

the four-dimensional boot-boxes that our quartermaster would require

to transport the left-footed boots we referred to in Chapter 2. What

do they ‘look’ like ?

We have named a component A4 in one dimension, a panel ABin two
dimensions, a block ABC in three. It seems reasonable to call a four-
dimensional block — a Ayperblock — ABCD. If a component in R is
defined by 2 x 1 halflines, a panel in R? by 2 X 2 = 4 halfplanes,
ablockin R3by2 X 3 = 6 halfspaces, then we would expect a
hyperblock in R* to be defined by 2 X 4 = 8 half-hyperspaces.

Table 6.1
Point Component Panel Block Hyperblock
Space: R° R? R? R3 Rt
1 . 0 0 — 1 1 —— 2 2 — 3 3 — 4 [ -
Vertices Py: (0)2 =1 (1)2 =2 (2>2 =4 (3)2 = 8 4>2 =16
. o 1 0 — 2 p P 3 2 — 4 3 —
Edges P;: (0)2 =] (1)2 =4 <2)2 =12 3)2 =32
. o . 2 0 3 2 [ 4 2 pr—
Faces P,: (0)2 =1 (1)2 = 6 2)2 =48

Blocks P;: 3 20= 1| ?) 2= 8
4
Hyperblocks P,: 0) W= ]
Total number of
elements, Z; P;: 30—=1 31=3 32 =9 33 =27 3t =381
Where(N>2"=——!2”' Fom—— leipnts/in an ordered tof i
» N —minl is the number of ways » elements rdered arrangement o

terms may be selected and be replaced by one of two distinct elements.
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5 ‘La construction rationnelle par cubes ne détruit pas P'initiative de chacun. Iln’y a qu’a
en jouer suivant ses gofits.” Thus Le Corbusier describes his system of construction for the
houses at Pessac, Oeuvre Compléte 1910-1929, p. 69.

In R! thereis 1! = 1 way a component can be equivalent to 4; in R?
there are 2! =2 X 1 = 2 ways a panel can be equivalent to AB;in R®,
31 =3 x 2 X 1 = 6 ways a block can be equivalent to ABC; and, by
induction, in R*there are 4! =4 X 3 X 2 x 1 = 24 ways of equivalence
with respect to 4 BCD. How many vertices, edges, faces and blocks (sic)
does a hyperblock have ? The mathematical pattern suggests the
answer, and, as before, the elements of the cartesian product
P(A)P(B)P(C)P(D) will confirm it (Table 6.1).

This illustrates the algebraic system, and even if we do not concern
ourselves with the detailed mathematics, nevertheless we can appreciate
the abstract pattern of numbers. For the mathematician and the archi-
tect there can be immense aesthetic satisfaction in discovering an under-
lying pattern to outwardly disordered and unrelated phenomena. For
both, the discovery may depend on the invention of a suitable pattern
language to make the structure explicit. Good systems will not restrict
freedom of thought or action, on the contrary they liberate, thus per-
mitting speculations beyond the immediate circumstances of their
invention.® Let us return from our escapade in four dimensions to the
knobbly world in which we live. On earth — although many of the shapes
and forms used in building tend to be rectangular, and the majority of
architects accept the well-tried resilience and robustness of this
‘cartesian’ system — on earth most things are irregular and non-rec-
tangular. We shall now take a look at some of the ways in which these
forms may be described.
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Figure 7.1
Approximation of irregu-
lar shape by quadrats:

a, the original shape

b, a coarse quadrat repre-
sentation

¢, a much finer resolution
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7 lIrregular polygons and convexity

Suppose we want to describe the irregular two-dimensional area shown
in Figure 7.1a. There are several ways this may be done, not least by
representing it graphically, in the traditional way, as a similarity. But
here we shall discuss methods of mapping the shape into numerical
approximation. The first way we shall discuss depends on dividing the
plane into quadrats or squares. If a square includes more than half of
the original shape which it covers we let it represent that area ; if not we
ignore it. Thus in Figure 7.1b only one of the squares satisfies the
requirement, and our quadrat approximation to the shape is very crude
indeed. But as the quadrats decrease in size better and better approxi-

mations are possible (Figure 7.1c). We shall call the ratio of the areas Q )

of the quadrat and S of the shape the resolution of the approximation.
It is clear as the ratio approaches zero, Q/S — 0, that the resolution
improves until approximations may be made as close to the original
shape as desired. The process is analogous to rounding figures to a

given number of decimal places, or mapping lengths into a set of
modular dimensions.

T TITT
b EEFENEEEPZ = Y ERE]
/\ =
f C\ :

T
L

N

IENEEEREEN]

Dy LT

\

There is, of course, no unique description of shape this way. The
description clearly depends on the quadrat size, but it also depends on
where the shape is placed or how it is orientated with respect to the axes
of the grid. That is to say, translation and rotation of either the shape
or the quadrat axes will change the approximation (Figure 7.2). It is
sometimes argued that triangular or hexagonal grids are more neutral
than the square, and while this is possibly true the increasing com-

plexity of calculation and numerical description rarely make their use
worthwhile.

)“\f
/|

/

Figure 7.2

Quadrat approximation

is not unique and de-

pends on the placing of

the grid:
a, original position

b, change of approxima-

tion after translation

¢, change after rotation

Figure 7.3

Zero-one matrix repre-
sentation of the original

shape
o 0 1 1
0 1 1 1
0 0 1 1
0 0 1 1
0o 0 1 1
0 0 1 1
0 0 1 1

O = e

O = = = O O O

Effectively, this is similar to the way in'which a computer image of 2
shape is output in binary form by a line-printer. Figure 7.3 compares 2
coarse 7 X 7 zero-one matrix representation of the shape with a line-
printer representation to a finer resolution (Figure 7.4). Clearly, as we
have previously seen, quadrat representation is at its best when it is used
to describe shapes which are both rectangular and modular and where
the size and orientation of the grid is suitably chosen. Economic and
concise notation may then be employed. With irregular shapes the
description is bound to become more cumbersome and mapping into
a zero-one matrix may become unwieldy, especially if the number of
zeros exceeds the ones.

One way in which the numerical description may be made more terse is
by scanning the shape in the manner of the cathode ray raster on a tele-
vision screen. We move across the shape in a given number of intervals
(twenty-five, say) marking the number of the interval at which we ‘step’
into the shape or out of it. On completing one line we return to the start,
move down a line and repeat our search for the boundary points.
Using a twenty-five line raster with twenty-five intervals we are able to
define our test shape in fifty entries at a resolution twelve times better
than given by the forty-nine entries of the 7 X 7 zero-one matrix
(Figure 7.5). This raster description is in effect a vector representation.
The reconstruction of the picture from the vector is a good example of
the modulo arithmetic which we briefly touched on in Chapter 1.

Figure 7.4 Figure 7.5 )
A “line-printer’ repre- Raster representation of
sentation of the shape the shape
e °
i L
0 o ® o=
°
0 ¢ as °,
e °
L ] [ ]
0 . Y
0 .o .o
L] L ]
t
0 b4 °
L]
1 . .
: L)
L]
0 o e

179



Figure 7.6

The outline plans of four
‘free-form’ buildings and
projects. The ‘curves’ are
all composed of straight
lines.

Designs by Alvar Aalto:
a, Baker House Dormi-
tory, Cambridge, Massa-
chusetts, 1947

b, Apartment house,
Bremen, 1958

Projects by Mies van der
Rohe:

¢, Office building for
Friedrichstrasse, Berlin,
1919

d, Glass skyscraper,
1920-21
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Figure 7.7

Two polygonal approxi-
mations to the shape
shown in Figure 7.1a:

a, with eight edges

b, with sixteen edges

1 For Aalto, see Frederick Gutheim, Alvar Aalto, New York, George Braziller Inc., 1960.

Thus, using a raster of length n, the element r in a vector description
represents the two-dimensional point

(x,y) = (r modulo n, Ci‘?ﬁ“‘ﬂ‘).
n

In the example above, when the scan reaches the raster point 24 (x = 24)
in the first line (y = 0) it moves onto the next point, 25, which is located
in two dimensions at the beginning (x = 25 modulo 25 = 0) of the next
line (y = (25 — 0)/25 = 1). The raster point 30 in the vector is then
located in this line at (x, y) = (5, 1) since 30 modulo 25 = 5 and

(30 — 5)/25 = 1. The raster point 610 will be represented graphically

at x = 610 modulo 25 = 10 and y = (610 — 10)/25 = 24, thatis at

(10, 24). An alternative method of scanning is the boustrophedon,
‘ox-turning’, of ancient Greek writing where the first line is left to right
and the next is right to left and so on.

Another way of describing planar shapes is by linear interpolation. This
method takes points on the boundary of the shape and joins them
together in a chain of straight lines. In fact, when architects propose
irregular plans for their buildings they often compose them from recti-
linear elements: the plans are then irregular polygons such as those
proposed for two glass skyscrapers by Mies van der Rohe in the twen-
ties, or the plan of a dormitory at the Massachusetts Institute of Tech-
nology where the Finnish architect Alvar Aalto! creates a long sinuous
frontage to the Charles River out of short, but straight, runs of brick
wall (Figure 7.6). Such polygons may be precisely described, while the
irregular shape we illustrate is approximated more and more accurately
by an n-sided polygon as n gets larger. We illustrate two approximations,
one with eight sides and one with sixteen (Figure 7.7).

a b

181



Figure 7.8
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2 Must a name mean something ?’ Alice asked doubtfully. ‘Of course it must,” Humpty
Dumpty said with a short laugh: ‘my name means the shape I am - and a good handsome
shape it is too. With a name like yours, you might be any shape, almost.” From The
Annotated Alice, edited by Martin Gardner, London, Penguin Books, 1965, p. 263.

We can describe an n-gon, Q, by giving it an appropriate mathematical
name. One way is to list the position vectors of its vertices in cyclic
orderina2 X n matrix

Qz[xo Xii e Xi wee Xpa x,,_l].
Yo V1 v Vi o Vn2 Vna

Where the suffix 7 is an integer modulo n, so that x,, = Xq, Yn = Yo
(Figure 7.8). Such a name, unfortunately, is certainly dependent on the
position of the origin and the orientation of the unit base vectors. A
change in these will give Q a new name: indeed such a transformation is
known to mathematicians as alias? for this reason. The polygon has not
moved, but its frame of reference has. For example, the triangle whose

matrix is
1 1 4
T1=[1 5 1]

2

becomes T, = [3

~N N
w
| S—)

)

st 2
31105 (08
+ A ——
-+ 1 4
[ |
- ==
(@) (©)
Figure 7.9
Figure 7.10

when the origin is moved to (— 1, — 2) on the old coordinate reference
system (Figure 7.9). The same shape, by this [x; y;]T notation, can be
called by an infinite number of different names. Obviously it is desirable
to eliminate the influence of extraneous relationships as much as
possible. We can remove the arbitrariness of location by describing the
shape in terms of a chain of vectors around its sides (Figure 7.10). We
note that the vector

21~z

Vi Vi i Yira — Vs

is no longer a position vector, but a vector from vertex Q;to Q;,,; that
is, the vector Q;0;,,. We adopt the convention that

Q:[u" Uy oo Up e Up g u,,_l]

Vo M ws Vg ok Ppog Ppa

represents Q as a chain of vectors. The components #; and v; are like the
measurements an architect makes on a plan to specify an oblique line

to aid a builder set out a plan: the difference here is that our dimensions
are directed, being the components of a vector. If measurements upwards
and to the right are positive, then downwards and to the left are nega-

9
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tive. In effect this implies the traditional anti-clockwise vector base
(Figure 7.11). This method of description frees it from locational
changes, thus for example in the case of the triangle:

a-1) @4-—-1 @ —4)]

n[s2n (o9 a-n 0 3 3

and = [4 _a 0] =T, say.

[e-2 -2 @-9
Ty [(7—3) G—17) (3—3)]

Note that Z;u; = Z,;v; = 0 in this description. While the «, v notation is
unaffected by translation (Figure 7.12), it is still altered by rotation
(Figure 7.13) of the vector base. Thus rotation of the vector base,
clockwise (Figure 7.14), through a right angle gives the alias

44 0
T“[ 03 —3]'

Effectively, this is the description we get if we measure positively u;
upwards and v; right to left, whereas before we had measured u; left to
right and v; upwards. How do we know that T3 and T, represent the
same shape when they look different ? The answer, in general, is not that
straightforward. All we can say is that if a rotation matrix

S — cosf sin6
¢~ | —sinf cosf

can be found such that for two descriptions Q and Q' — using the u, v
notation —

Q=5Q

then Q and Q' are aliases for one and the same shape, whatever that

shape may be. Thus, above, when 6 :g, thencos § =0andsinf =1,

and we can show by matrix multiplication that Ty = S; T,:
2

[ -2 o=l Vol Te s 3

ja

O

o

0.

Figure 7.15a

j4

Qx

0,

o

i
Figure 7.15b

iﬁl

O

Figure 7.15¢

il

Qo

i
Figure 7.16

o

But there are yet more disguises. It is clear that the vertex we choose to
start with can be any one out of » in the general case of the #-gon. This
is the same as saying that the columns of the 2 X » matrix may be
cyclically permuted and it will still represent the same shape (Figure
7.15). For example, using the zero-one cyclic permutation matrices
which we discussed in Chapter 4 we see that our triangle is equally well
defined by

[0 3 —3]
T3Py = 4 —4 0 =T§

T3Py = = Tj?;

T3 Py = = Tg

1 00 0 01 010
where Pips =0 1 0[Py =|[1 0 O, Pgy=|0 0 1]
0 0 1 010 1 00

So far we have been numbering the vectors representing the sides in a
clockwise direction. If we had numbered them in the anti-clockwise
direction, (Figure 7.16), our triangle would have acquired the alias

3 -3 0
T5=[0 4 —4]‘

The zero-one permutation matrix Py, gives
3 -3 olfo 0 17 __ 0 —3 3] _
T5P321=[0 4 —4]0 10 _[—4 4 o]“—Ta'
1 00

The minus sign may be considered to be the result of pre-multiplication

01 bythe2 x 2 rotation matrix S, since S, = — I, thus

—1 o0 3 —3].[ 0 —3 3]_ _
s,,r,,:[ 0 —1][4 =l o]—[—4 4 o]‘ Ta.
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If we choose a clockwise vector base (Figure 7.17) another kind of alias
arises (Figure 7.18): reflecting the base in y = x changes T; to

0 1770 3 —31 [4 —4 0
RT‘”’_[I o][4 —4 o]—[o 3 —3]‘T6'

There is yet one more disguise our shape may affect to escape recogni-
tion. Its name depends on the unit of measure we choose. Thus a vector
base with unit vectors half the length of the ones we originally chose
will cause the terms of the matrix to double (Figure 7.19). Thus

0 6 —6
T, = [8 —8 0]
also represents the same shape.

Going back to the general n-gon, we see that two aliases in %, v notation
Q and Q' must be related by an equation of the form

Q =mRiSQ'P

where m is a scaling factor, R is either the 2 X 2 identity matrix, I, if i
is even, or the reflection matrix R = [(1) (1)] if iis odd, S is the spin

cosf sinf
—sinf cosf
where (i, j,..., k) is a cyclic permutation of (1, 2,...,n) or (n,n — 1,..., 1).

matrix [ ], and Pisan X npermutation matrix Py...,

This demonstrates the problems one can get into when attempting to
describe shape numerically. Of course, if we were comparing two shapes
to see whether they were similar the same problems would repeat
themselves (Figure 7.20). The two shapes may be of different scales: one
may be a dilation of the other. The two shapes may be enantiomorphic:
one the reflection of the other. They may be rotated with respect to one
another. And finally the vertices may be numbered in a different cycle.
If the two shapes are isometric then one shape may be covered by the
other by moving its position in the plane, or changing its address. Such a
transformation which carries the object to a new address is called an
alibi. Strictly speaking we must refer to the reflection — which, as we

pointed out in Chapter 2, requires movement outside the plane — as an
improper alibi. Looked at this way the equation

Q=mR:SQ'P
' L translation ifm=1,Ri=LS=I
properisometry :ifm=1Ri =1L S7#I

improper isometry: if m = 1, RP 41

general similarity :ifm7~1

expresses the variety of transformations which are permissible between
two similar shapes in a plane.

One interesting use of the u, v notation is in determining the area of any
irregular polygon. The area of a polygon Q is given by u”Av where
u = [y;],v = [v;] and A = [a,;] such that

0ifj > i
a;=1{}ifj=i
Lifij =<

0 3 :

For example, the area of the triangle T = [ 4 —4 o g] is given by

0 3 —3][% 0 O 4
1%0—4]
113 o

=[0 3 —3]'2}

=6.

We may check this against the rule that the area is half the height times
base. In this case the triangle has a height 3 and base 4, and the expres-
sion above is seen to provide the correct answer. In the case of shapes
with holes in, building plans, for example, with light-wells and courts,
the shape may be ‘cut’ into and providing the direction of numbering
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Figure 7.22
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remains in the same sense, the area will be calculated for the shape
less its holes (Figure 7.21). A problem arises if the polygon crosses
itself. A bow-tie, for example, will have zero area calculated this way

(Figure 7.22). This is because the convention gives direction to the areas.

A shape circumscribed in a clockwise direction will have a positive area,
and a shape described in an anti-clockwise cycle will have a negative
area. The answer to the bow-tie problem is not to cross over lines: then
a definite area will be found (Figure 7.23).

We have pursued this exercise partly to demonstrate how cumbersome
it can be to recognize shape when it is expressed in algebraic terms.
While the same shape may have any number of names, each alias or
alibi is sufficient for us to be able to reproduce its form. Further, the
descriptions allow us to calculate other measures apart from area. The
perimeter, for example, of an n-gon described in u, v notation is given
by the sum of the length of its sides, , (1> + v . If q; = [u; v;]T is the
vector Q;0;,, then we write

llqills = +(u® + v

and the perimeter g, of 0, is given by

g=2;1q:l

where || q; ||; is known as the euclidean norm of the column vector g;.
Another measure of the circumference is given by the taxicab norm, so
named because it represents the rectangular distance travelled from
point to point by taxicabs along the grid-iron roads of the United
States. This norm is given by || q; |l, = (| | + | v:|) where | u; | and

| v; | are the absolute, or positive, values of the components. The
rectangular perimeter

qr = zl' ” q; ”1

is the ultimate perimeter achieved by a quadrat approximation of Q as

0
0, Qs
Qo (A
id
Os
i
Figure 7.24 Figure 7.25

the resolution tends to zero. The euclidean norm measures airline
distance between vertices, the taxicab norm provides the rectangular.

As we have already mentioned, another useful calculation is to be able
to locate the centroid of an area. The centroid, (X, Y) of an irregular
n-gon described in x, y notation is given by

- = 2 (% + Xi1) iy Vi — Xi Visa)
3Zi(Xip1 Vi — Xi Vin)

Y= 2 (s + Yird) Kinn ¥s — Xi Yira)
32i(Xi1 Vi — Xi Vi)

where 3Z,(X;1 i — X; Vi41) is the area of the n-gon. This formulation is
applicable, with suitable ‘cutting’ or ‘tying’, to multiply connected
regions.

One of the unfortunate characteristics of both the x, y notation and the
u, v notation is the way it inevitably disguises regularity. The hexagon,
in u, v notation,

n=[; P2 2 AT

exhibits some regularities (Figure 7.24), but it is only when we measure
the lengths of its sides and find them equal to 2 do we begin to ap-
preciate just how regular it is. To find out more we need to measure the
angles at each vertex. These are provided by the inner products of the
vectors representing adjacent sides which radiate from the vertices,
namely the vector pairs — q; and gq;,, (Figure 7.25). Thus

— Qi Qo = — Witk + Vi) = — 14 [l | @i [l cO8 01

where the angle §;., lies between — q; and g, that is to say 0, is the
angle / Q;0;:,1 Q... In the case of the hexagon we have
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Figure 7.26
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cos 0; = — (uguy + vor1)
llgoll, g ll,

= —(0.4/3+2.1)
Sz

=—3

where 6, is seen to be 27r/3 or 120°. We find in the same way that the
remaining angles are also 120° so that H is a perfectly regular hexagon.
This suggests an alternative description of an n-gon in terms of the
lengths of its sides and its angles. We shall take angles which do not
bend back on themselves so that 0 < 8; <. In the case of polygons
with re-entrant vertices the angle measured is thus the external one

O
Qz Qi1
Qo
Qn—-l
o
Qn—.S
Qi+1
Qu—z

(Figure 7.26). This r, 6 description takes the form, once again, of a
2 X nmatrix for an n-gon Q.

[re 1 o 1 o Fag Taa

Q—[oo 8, .. 0 .. 6., en_l]'

The top row sums directly to give us the perimeter, while the bottom
row sums to rr where r < n — 2 and the equality holds if the n-gon is
convex (has no re-entrant angles). The relation between this r, 6 descrip-
tion and the u, v description has already been given above in discussing
the dot product g, . g;,,. The conversion from one to another is a trivial
matter in computing terms. One additional refinement may be intro-

3 Peter Haggett and Richard J. Chorley. Network Analysis in Geography, London, Edward
Arnold, 1969, pp. 70-3.

4 William Bunge. Theoretical Geography, Lund, C. W. K. Gleerup, 1966, pp. 72-88.

duced for the r, 6 description: the angles 6, are invariant under simi-
larity, but the lengths r; have real dimensions and change according to
dilation of the figure, or choice of units for measurement. By dividing
each length by the perimeter we turn the top row also into ratios, s;, so
that 2; s; = 1. The s, 0 notation, in this normalized form, provides a
name for a shape which is totally self-contained and unaffected by
external reference systems. Unfortunately this is only true for convex
polygons, for unless the internal and external angles are clearly identified
in non-convex cases, the s, @ notation is ambiguous. The reader is
invited to show that different non-convex polygons can share the same
s, 6 name. The only aliases are due to cyclic permutation of the vertices
within the figure itself. Hence two n-gons O and Q’ are similar if, in

s, @ notation,

Q=QP

where Pis an#n X ncyclic permutation matrix. The hexagon H in this
notation is

1 1 1 1 1 1
H= |27 27 27 27 27 2=
3 3 3 3 3 3

which expresses completely the symmetry of its form.

In recent years considerable interest has been shown in describing shape
by geographers. They are interested in quantifying and classifying the
shapes of territories. In particular, urban studies lead to the measure-
ment of overlapping areas such as enumeration districts for census
purposes, traffic zones used for transportation surveys, and special
regions defined on ecological grounds. Mostly geographers use ratios
containing values for the area, perimeter, and axes of the unit compared
with basic geometric forms such as the circle or ellipse. Much of this
work is summarized in Haggett and Chorley’s Network Analysis in
Geography® where reference is made to an excellent account of the
difficulties of finding a suitable measure of shape by William Bunge.*

In introducing the subject Bunge reminds us that ‘shape has never been
measured’. ‘The problem,’ he says, ‘is to invent a measure of shape
which (1) does not include less than shape, as do the measures used by
geomorphologists; (2) does not include more than shape, as do the

191



Figure 7.27

A typical radial axis of
an n-gon from its
centroid to a vertex

192

5 See a special study by the Building Performance Research Unit, University of Strathclyde,
‘Building Appraisal; St Michael’s Academy Kilwinning’, The Architect’s Journal, 7
January, 1970, p. 26.

measures used by mathematicians; (3) is objective; and (4) does not do
violence to our intuitive notion of what constitutes shape.” Bunge
proposes a set of indices which compare the shape with equal-sided
polygons. Haggett and Chorley refer to more complex measures
involving the determination of the centroid and the length of radial
lines from this centre (Figure 7.27). In our terms these radial lengths are
given by

11l = (Crs — % + (s — V)

They also tabulate some of the most frequently used measures (Table
7.1), including one by Blair and Bliss designed to overcome problems
of ‘fragmented’ and ‘punctured’ units.

Recently use has been made of compactness measures in the evaluation
of school building. In general, it has been assumed by architects that
compactness of plan relates ‘somehow to convenience in circulation,
lengths of service runs, amount of external walling and a number of
other factors affecting cost’. The plan compactness measure devised

by Markus ef al.5 compares the perimeter of a circle of area equal to the
total floor space, with the perimeter taken floor by floor of the building.
This ratio is similar to Horton’s form ratio in geographical studies. But
Markus has extended the notion to compactness in volume which
‘probably relates to such variables as heat loss, cost of providing
external skin and maintenance. [The volume ratio] can be measured by
comparing the area of a curved surface of a hemisphere of volume equal
to the volume of the building with the area of external skin of the
building (walls and roof)’.

Table 7.1

Ratios for the comparison
of the shape of closed
figures

:
i

\ Index Formula Author
Form ratio: 44 Horton (1932),
a? Haggett (1965)
Circularity ratio: 474 Miller (1953)
pZ
Elongation ratio: 2 / A Schumm (1956)
aN =
Radial-line ratio: 2; (ti - l) Bogee anc Clark (1964)
n
Ellipticity ratio: 44 Stoddart (1965)
wab
Compactness ratio: A Blair and Bliss (1967)
(27 [, 2dA)}
Variables:
A Area
p Perimeter
a Diameter of minor axes
b Diameter of major axes
n  Number of vertices

~
.

Normalized radial axes from centroid to vertices
Radial axes from centroid to small area d4.

This table has been adapted from Haggett and Chorley where full
references are to be found. All ratios attain the value 1 for a circle.
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Figure 7.28

The ‘skeleton’ of an
n-gon derived by the
medial axis transfor-
mation

194

6 Judith Hilditch. ‘An Application of Graph Theory in Problem Recognition’, in Machine
Intelligence 3, edited by Donald Michie, Edinburgh University Press, 1968, pp. 325-47.

7 A straightforward and well illustrated account is given by L. A. Lyusternik, Convex
Figures and Polyhedra, New York, Dover, 1963. See also Russell V. Benson, Euclidean
Geometry and Convexity, New York, McGraw-Hill, 1966.

Another field where pattern recognition has become a central subject of

research is machine intelligence. Judith Hilditch has described an

application of graph theory in the recognition of chromosome types.

We discuss some aspects of graph theory in Chapter 10, but here we

may note an interesting method of reducing shape to its essential

skeleton. This transformation was originally proposed by Blum and

was named by him the ‘Medial Axis Transform’ (Figure 7.28).

To quote Hilditch:
“This produces a line drawing from a plane figure of any shape.
It can probably be most simply described by the grass fire
analogy — if we consider the boundary of some shape drawn out
on a uniform dry grass field, and then the grass at all points on
the boundary set alight at the same moment, the front of the fire
will move away from the boundary at a steady rate until at
certain points different parts of the front will meet. The medial
axis is the locus of points at which this occurs. This set of points,
plus a function giving for each point the time at which the fronts
met, completely defines the original shape. This locus of points
forms a type of “skeleton” for the picture.’®

The reader will recognize that the fire front represents the internal

boundary of the circular neighbourhood of the figure’s original perimeter.

We have had occasion to refer to convex sets and convexity. No account
of the description of shape would be complete without an introduction
to this important subject. Convexity now plays a fundamental role in
the treatment of many geometrical studies.” If we denote a line segment
joining 4 and B (excluding the points 4 and B themselves) by S(4, B)
then a convex set is a set of points K such that 4 € K and B € K implies

P

a

Figure 7.29

(1]

=]

Figure 7.30

b

S(4, B) C K, thatisto say that if 4 and B are in the convex set then so
must be all the points that lie on the straight line between them (Figure
7.29b). As we have mentioned earlier, components, panels and blocks are
examples of convex sets of points, but the irregular shape we have been
using is not (Figure 7.29a).

A convex n-gon in two-dimensions may be defined as the intersection
of n halfplanes, but now — unlike our previous usage — we allow the
halfplanes to take up non-rectangular positions. In three dimensions a
convex polyhedron is defined by the intersection of halfspaces. Half-
spaces may be thought of as all the points to one side of a plane, and
none on the other: such a plan divides space into two halves. We may
use the vector dot product to neatly define a halfplane in R? and half-
space in R?

H={x|x.h<0}

wher; X = [x ylTinR?*and[x y z]Tin R®. Effectively, what this
definition says is that any vector x satisfying the condition will make an
angle with the vector h such that its cosine will be negative.

One of the most important, and certainly one of the most elegant,
theorems on convexity is due to the French mathematician Carathéo-
dory. If we have a closed bounded set of points x, then there exists a
convex cover K (Figure 7.29c¢) given by

K= {x|x=2%;a;x;, whereZ;a; = 1 and q; > 0}.

For example, given the four vertices of the bow-tie we have used before
(Figure 7.30)

f=1 =1 11
B_[—l 1 —1 1]

the convex cover is given by the set of points
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Fl=[Cagatata]

where @, + a, + a3 + a, = 1 and all of the g; are positive or zero. Is the
point [0 1]7 in the convex cover ? This would require

—al—a2+a3+a4:()
—ata—ata =1
a1+ag+aa+a4=1.

These equations are satisfied for a; > 0by a, = 0,4, = 3,0, =0,
a, = 1, so that the point does lie within the set. But does [0 3]7 liein
the cover ? This would require

—al—a2+as+a4=0
—a1+a2_a3+a4=3
a1+a2—|—aa+a4=l.

Taking the last two equations and adding we find that

202 + 2(14 = 4
or that
az + (14 = 2

but this is impossible since a, + a, cannot equal 2 and satisfy the con-
ditions that =; = 1 for this requires at least 4; or a3 to be negative,
which is not permitted. Thus [0  3]7 lies outside the cover. The convex
cover of the bow-tie is a square centred on the origin with sides of
length 2 (Figure 7.30).

The recent interest in convexity is partly due to its importance in
optimization procedures such as linear programming. It is not our
intention to discuss linear programming in any detail here, but according
to Churchman, Ackoff and Arnoff the method can be used for optimi-
zation problems in which the following conditions are satisfied:
‘1. There must exist an objective, such as profit, cost or quanti-
ties, which is to be optimised and which can be expressed as, or
represented by, a linear function.

8 C. West Churchman, Russell L. Ackoff, and E. Leonard Arnoff. Introduction to Opera-
tions Research, New York, Wiley, 1957, p. 281.

9 However, sometimes suitable transformations can be found which will linearize the
variables. Methods of non-linear programming have also been developed.

2. There must be restrictions on the amount or extent of attain-
ment of the objective and these restrictions must be expressible
as, or representable by, a system of linear equalities or
inequalities.’®
They go on to note that the linearity assumption is inherent in the
technique and simply means that if, for example, it costs ten times as
much to build ten dwellings, it will cost 2 hundred times as much to
build one hundred, and so on. If this assumption cannot be realistically
made, or if the functions cannot be linearized by a suitable transforma-
tion of variables, then the techniques of linear programming will not be
applicable.

The second condition quoted above implies that each constraint may be
represented by a halfspace within which the restrictions will be satisfied.
The solution set, as we saw earlier, consists then of the intersection of all
the halfspaces defined for each constraint. The search in linear pro-
gramming is to find the vertices of the convex hull bounding the solution
set, for one of the fundamental theorems of the method remarks that
among these extremum points the optimum solution is to be found.

In our earlier example, where we delimited the solution set of a room
given certain physical constraints, the boundary of the set was not only
re-entrant (so that the set was not convex) but it was also curvilinear.®
This emphasizes a recurrent problem in spatial and building studies
which may make linear programming of limited use. The dimensions
of the quantities which we handle are not only linear, L?, they are areal,
L2, and volumetric, L3 Other measures such as flows of water in pipes
are also non-linear, L", where n eR. We cannot say that if the length of
wall of a 3 m-square room is 12 m, that the length of wall of a 6 m-square
room is 24 m: it certainly is not, since the perimeter, p, of the room is
related to area, 4, by the equation p? = 44 which is not linear. We
recommend extreme caution in giving credibility to the results of linear
programming as applied to environmental problems. The real issues are
too often curtailed to conform to the restrictive limitations of the
analytical technique, or to those relationships which may be con-
veniently transformed to linear expressions.

One other important theorem of convexity states that the intersection
of any two convex sets is a third convex set. We have already met an
example of this in our previous study of panels and blocks. We are now
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10 Dean Hawkes and Richard Stibbs. The Environmental Evaluation of Buildings 1-5, in
particular Working Papers 15, 29 and 30, University of Cambridge, Land Use and Built
Form Studies, 1969-70.

in a position to describe the use of convexity in architectural problems
related to sunlighting and shadowing, or sciagraphy, and the obstruction
caused by external objects to views seen through the windows of
buildings. Hawkes and Stibbs'® in a series of papers have demonstrated
the interrelatedness of environmental performance — heating, cooling,
lighting, noise levels and so on — and the geometry of a building and its
surroundings.

Here we shall briefly discuss the conceptual basis of their approach,
which itself relies on considerable computation. In Chapter 1 we showed
how sunlight arriving on earth, for all practical purposes in parallel

rays, gives rise to affine transformations when objects cast their shadows.
Consider the ray, R. Let P be an orthogonal projection of an object, O,
onto a plane perpendicular to the ray. The cartesian product of R with P
represents an extrusion of that object in space as we saw with Mies van
der Rohe’s bronze mullion. If the object is representable as a convex set
then so will the extrusion be convex. Usually, in the case of a building it
will be possible to decompose P into a number of convex polygons K;
and to treat each separately for the purposes of the exercise. P = U; K.
Now let us name the surface which may be cast in shadow the set S. The
intersection of S with the cartesian product K;R defines the area in
shadow taken over all i, U; (S N K;R). In practice it is only necessary to
consider the set of extremum points and edges of O to obtain the shadow
set.

Finally, if we are interested in the obstruction to view in a room caused
by external objects and the size and shape of the window opening, we
may follow a similar procedure. The cone of vision ¥ through a plane
convex opening W intersects the external objects O — described indi-
vidually as convex sets —in a convex set K; for each convex obstruction.
A cone of obstruction Vx; which subtends K; and whose edges and faces
contain the extremum points and edges of K; now intersects with the
convex opening W. This intersection taken over all i represents the
perspectivity of the obstructions seen through the window:

P=U;(Ve; N\ W).

In both the above examples planar areas of shadowing and obstruction
may be computed using the area formula for the general n-gon.

8 Modules and nhumbers

In the 1920s and *30s it was becoming clear to architects, to builders and
to businessmen that the increasing use of the techniques of mass pro-
duction in the building industry — in the manufacture of doors, windows,
structural members, wall and roof panels and components of all kinds —
was creating a pressing need for the control and standardization of the
sizes of these various items. The advantages of repeated machine-made
units in simplifying and speeding construction and in cutting costs had
been shown with dramatic force in the great works of Victorian engi-
neering: most spectacularly in the Crystal Palace, where these virtues
were proved for an industrialized building system in glass and cast iron
on a giant scale. What was new in the twentieth century was the growth
of an industry using the principles of Henry Ford’s ‘production line’

in the manufacture of ‘off-the-peg’ components, designed not for one
situation only but for use in a variety of buildings and assembled with
other units in a variety of different ways.

The economics of production demanded that the range of sizes manu-
factured should not be too great — since the ‘run’ for one item would
become small, and the cost for tooling up for a large number of sizes
expensive. On the other hand the variety of choice offered to the
architect should not be so narrow as to limit his freedom of design. And
especially it was important that different products made by different
manufacturers should in some way be related and coordinated in their
dimensions so as to fit together in various combinations. They should
allow for a flexibility of arrangement, without the wasteful and trouble-
some problems of cutting to size on the site, which the old building
methods had entailed.

One of the most forceful advocates of ‘modular coordination’ in
building at this time was Albert Farwell Bemis, whose work has been
already briefly mentioned in Chapter 5, and whose book The Evolving
House' is a weighty review of the economic and social problems of mass
housing, and of the methods of machine production in other industries,
for comparison with the handicraft techniques of building. Bemis
catalogued the American proprietary systems of prefabricated housing,
which even at that time were numerous, and showed that they displayed
a rich dimensional diversity. As a start to the problem of coordination
he pressed for the general adoption of a smallest basic unit of size, or

1 Albert Farwell Bemis and John Burchard. The Evolving House.
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Figure 8.1

House structure defined
within a matrix of
cubelets. From Bemis, The
Evolving House
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module; the dimensions of all components would ideally then be fixed
as multiples of this basic unit. Dimensions in the vertical plane would
conform to the module as well as those in the horizontal. One can
imagine the volume occupied by the building as a stack of tiny notional
‘cubes of space’ — the cubelets of Chapter 5 — with every part of the
building’s structure exactly filling a number of these cubes within the
total ‘building matrix’ (Figure 8.1).

Bemis proposed that the size of this basic module be 4 inches. This was
partly to relate to existing practice in wood-frame construction using
4in X 2 in studs, and to the commonly used masonry dimension of

8 in. It was sensible, he thought, to determine the minimum modular
size on the basis of wall thicknesses rather than from floor or roof
thicknesses, since in general the wall dimension would be the smaller.
There would, of course, be some materials and small items whose
dimensions would be necessarily much less than 4 in, but the intention
was that these should lie within modular spaces and with their edges
or faces along the lines of the modular grid. In this way all junctions
between principal components would conform to the overall 4-inch
spacing.

Although Bemis emphasized that the advantages for coordination, mass
production and standardization would apply in principle with any small
dimension — 3 in, 33 in, 4} in — the rightness of his original choice has
been confirmed by time. The work of the British Standards Institution

2 For a history of the development of modular coordination ideas in Britain and an
account of the work of the British Standards Institution and the Building Research Station
in this area, with a very full bibliography of the subject, see Bruce Martin, The Co-ordina-
tion of Dimensions for Buildings, London, Royal Institute of British Architects, 1965.

3J. W. Harding. ‘Co-ordination by Design Modules’ in The Builder, 22 September 1961,
pp. 544-8.

and of the Building Research Station in Britain? has resulted in the
official adoption of the 4-in module, and the same unit has been recom-
mended in other countries on the imperial standard ; while in Scandi-
navia and Europe the metric module of one decimetre (100 mm) is as
close an equivalent as is possible in round figures. This neat corre-
spondence of the metric and imperial sizes is in fact one of the reasons
behind the choice of the 4 in/100 mm unit. Also some round number
multiples of the basic module size give convenient dimensions for
architectural planning. 10 modules gives 3 ft 4 in and 1 metre respec-
tively, the width of a door opening for example, while 30 modules

(10 ft or 3 metres) could be a floor-to-ceiling height, or a useful small
room dimension in plan.

But the agreement of a 4-in or a 100-mm unit as a basis for dimensional
coordination is only a beginning; for the number of possible sizes
allowed for bigger components by taking all multiples of the basic
module, is still very great. J. W. Harding? has coined the term ‘Bemis
set’ to describe the set B of dimensions iz, where @ = 4 in and i is some
positive integer. We express this in the notation of set theory as

B={x|x=igicZ.}

where Z_ is the set of all positive integers; so that the mathematical
sentence says that the Bemis set comprises all those dimensions x such
that x is some positive integral multiple of the basic modular dimension
a=4in.

Note that the lower case letter a will be used here throughout to signify
a basic modular dimension, although capital M is conventional in the
modular coordination literature. In our case we wish to use M to

signify a particular set of modular dimensions, that set which comprises
all multiples of the internationally accepted 100-mm standard, which
we shall call the “Modular set’; in the same way that capital B is used for
the 4-in Bemis set.

To limit the range of possibilities which the Bemis type of set offers, it is
desirable to select from the set certain preferred sizes for components.
In particular, there may be established a hierarchy of modules at
different scales, (or ‘multi-modules’), all related. A major module
governs the spacing of the structural system, for example, within this a
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Figure 8.2

The ‘trade mark’ of Le
Corbusier’s proportional
system, the Modulor. ‘A
man-with-arm-upraised
provides, at the deter-
mining points of his oc-
cupation of space — foot,
solar plexus, head, tips of
fingers of the upraised
arm — three intervals_
which give rise to a series
“of golden sections, called
the Fibonacci series.’
(See pages 234—7 and
Figure 9.13.)
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‘planning module’ fixes the sizes of such elements in the middle range
as doors, windows and partition units; and the detailed construction of
the parts is controlled by the basic 4-in or 100-mm module, at the
smallest scale.

There are very many criteria on which the larger dimensions can be
chosen. Konrad Wachsmann?* has listed twelve types of module, or
rather, in effect, factors affecting the choice of modular dimension.
These factors overlap, and in the end the final choice of sizes would
depend on a synthesis of (or compromise between) their various
demands. They are the outcome of raw material sizes, of the various
structural characteristiCs of materials, and of production engineering
Tequirements they are governed by ‘transportation, storage and |
arection procedures’ — the capacity of Toading equipment, techniques of
handling in warehouses, and the limits of weight and size imposed on
{hose elements moved by hand;; or they may depend on the methods of
Jointing and assembly of units. These are technical considerations. More_
Important perhaps is the relation of the planning module to those
features of the design of buildings which take their size directly from
The measurements of the human body. The height and width of a door,
the height of such fixtures as worktops, cupboards, seats or wash basins,
the length of a bath or a bed, the width of a laboratory bench or an
office desk; all these depend on the proportions of the limbs, or the
space swept out by the body in movement.

It is the standard tatami or floor mat, designed for sleeping and sitting,
which acts as the module in Japanese domestic architecture. And the
key dimension of Le Corbusier’s Modulor set of preferred sizes is
chosen as equal to the height of ‘those good-looking men, such as the
policemen, in English detective novels, who are always six feet tall’® —
though this is more to relate the proportional system to the measure of
man in a symbolic way, than for any strict ergonomic reason — (Figure
8.2). Figure 8.3 is an illustration from Pierre Bussat’s Die Modul-
Ordnung im Hochbau which tabulates in graphical form some modular

Figure 8.3

‘Functional modular
sizes’. From Bussat, Die
Modul-Ordnung im Hochbau

4 Konrad Wachsmann. The Turning Point of Building; Structure and Design, New York,
Reinhold, 1961.

5 Le Corbusier. The Modulor, London, Faber & Faber, 1954.
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stehender Mensch
homme debout

2 sitzender Mensch

homme assis

3 in Fauteuil sitzender
Mensch

homme assis sur
fauteuil

4 auf Liegestuhl aus -

N6erZ I o=

gestreckter Mensch
homme étendu sur
chaise longue

5 stehender Mensch mit

gegrétschten Beinen
homme debout, pieds
écartés

6 gehender Mensch mit
Gepick

homme marchant avec
bagage

7 zwei stehende
Menschen
deux hommes debouts

ED DI

10 11
i T 8 zwei nebeneinander

stehende Menschen
/ \ deux hommes debouts
[ \ coté a coté

\ / 9 drei nebeneinander

\ stehende Menschen
trois hommes debouts
coté a coté

12
10 auf Sofa sitzender
Mensch
homme assis sur
canapé

11 stehender Mensch mit
ausgestreckten Armen
homme debout, bras
écartés

12 Mensch in Bett
homme couché
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6 Described in J. D. Kay, ‘Modular Co-ordination in Herts School Design’, The Archi-
tects’ Journal, 8 December 1955, pp. 783-8.

sizes relating to furniture and to the human body. The dimensions are
expressed as multiples of a 100-mm module. Tt will be clear that some of
these (the ‘plan’ dimensions of the body, the span of both arms stretched
out to their furthest reach, the bed) are more significant than other sizes
shown.

Our main interest here, however, is in the numerical and algebraic
considerations which enter into the matter of the choice of modular
sizes. The purpose of a modular system in practical building terms is to
ensure some dimensional relationship between building components of
different sizes, so that it will be possible to fit them together in different
arrangements. The Bemis set, or any other set of sizes made up of all
integral multiples of some basic modular dimension a (such as, for
example, thea =3 ft4inanda =8ft3in sizes used in the planning
of the famous Hertfordshire prefabricated school buildings® in the
1950s) has a particular simple property which allows for this modular
coordination of sizes.

For any two sizes from the set, 7,a and n,a (where n, and n, are any
integers), their sum (n, + ny)aisalsoa member of the set. It then
follows that if any number of lengths from the set are added, their sum
is again a length from the set; since if mya, na, nya, n,a... are members of
the set, then so is (1, -+ ny)a, therefore so is ((n, + ny) + ng)a, sois

(((ny + ny) + ng) + ny)a, and so on. Recall that such a set is described as
being closed under addition.

When we produce any set of modular dimensions D by multiplying one
basic modular dimension by every number in a set of numbers, then

we use scalar multiplication. In formal terms, scalar multiplication of a
set S by a number n, produces a new set in which each element of S'is
multiplied by n, that is

nS = {ns; | s;€ S}.

Thus we distinguish sets of dimensions from sets of numbers; and so
we might put D(4 in) = B, or D(100 mm) = M, for these are both sets
of dimensions.

Figure 8.4

The sizes comprising the Bemis set B, the modular set M, and all similar
series, are generated by multiplying the basic module @ in each case by
the set Z, of all positive integers {0, 1, 2, 3...}; and Z, is the most
obvious example of a set which is closed under addition. Because of this
property, of closure under addition, it tends to be possible in such a
system to equal some dimension determined by a large component

with a suitable combination of smaller components and in general to
coordinate the different sizes together.

The system based on multiples of a single modular size  — be it 100 mm,
3 ft4in, 8 ft 3 in, or whatever — gives a notional grid underlying a
building’s design, made up of square units (if we look at a plan or an
elevation, or cubic units — as in the Bemis drawing — if we take the
whole volume of the building) with the edges of components lying along
grid lines, and their principal dimensions filling exactly some number of
grid intervals.

We can give a formal description of this grid by making use of the
concept of the cartesian product, which was introduced in Chapter 6.
The set of real numbers R can be represented by the number line,
extending indefinitely from zero in the two, positive and negative,
directions. We are only interested here in the positive half of the set, R,,
since there is no meaning to negative numbers or dimensions in this
context. The cartesian product R, R, or R 2 is the set of all points

(x, ) in two-dimensional space, such that x and y are positive real
number coordinates of those points. R,?is thus a shorthand expression
signifying that part of the continuous two-dimensional plane which has
positive coordinates (Figure 8.4a). In the same way we use the treble

b 4 ° ° L] ® L]
4 ° ® e ® L]

e ° e ° °

L e L] o e

® ° ° ° °
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7 Bruce Martin, The Co-ordination of Dimensions for Building, p. 25. Compare Martin’s
diagrams with the set-theoretic representation of grids here using cartesian products, and
in our Figures 8.8 and 8.11.

product R, ® to signify positive three-dimensional space, by the set of planes in the three orthogonal orientations (Figure 8.6c—); while their
poinits (¥, , 2). union Z,R,2 U R.Z R, U R,*Z form a cellular structure of hollow
Figure 8.6 cubes of space, similar to the Bemis ‘grand matrix’ (Figure 8.6f).

{(x,9,2)| xe R, ye R, ze R, }.

If we now represent the positive integers Z,, set out along the positive

half of the number line in a similar way, then by taking the cartesian a
product Z,2 we derive the lattice of modular points (Figure 8.4b). Since

Z. contains only positive integers this lattice comprises only those

points (x, y) whose coordinates x and y take positive integral values.

The cartesian product R, Z, contains all those points (x, y) where the
x coordinate may take any positive real value, but the y coordinate is
some integer. This gives the pattern of modular lines at unit spacing
parallel with the x-axis (Figure 8.52); and the corresponding product
Z. R, gives the equivalent pattern at right angles, parallel to the y-axis
(Figure 8.5b). It follows that the union of these two product sets
\/. R,Z, U Z,R, form aregular square grid of lines, or what Martin’ calls
"\ in the language of modular coordination theory, the basic module grid & d e
(Figure 8.5¢).

Figure 8.5

a b c

The same principle may be extended, using cartesian products still, into
three dimensions. R, 2 is ‘positive’ three-dimensional space (Figure 8.6a),
and correspondingly Z, 3 is a three-dimensional lattice of modular grid
points with positive integral coordinates (Figure 8.6b). The three
products Z, R,? R,Z R, and R,*Z, are the sets of parallel modular

2"MNG 207



{ scalar product nZ, = {0, n, 2n, 3n... }. In the figure we illustrate the two
grids superimposed, for the case where n = 3 (Figure 8.8b). It is clear

L that if we were now to give dimensions to the units, this figure could

| represent the basic module grid for a 4-in module, with a 1-ft planning

grid overlaid.

Figure 8.7

\5& One special type of grid which has a particular usefulness is the fartan
grid, shown in Figure 8.8c. It is produced in effect by taking an alter-
nating pair of modular dimensions in each direction. Its main purpose
is to determine the regular spacing of a building’s structural frame,
where the beams or walls would lie within the narrow modular bands,
and the columns at their intersections (Figure 8.9). This meets the
so-called ‘thickness problem’ which arises when components whose
length is modular, but not their thickness, come together at a corner.
Oftherwise, without the tartan the two must overlap to give continuity of

To complete this group of diagrams we have the three product sets structure, and. the thickness of one must be ad_ded to the length of the

R.Z,%Z.R,Z, and Z.?R,, which comprise the differently orientated | | other, so-m:_a.kmg.that length non-'modu.lar (Flgure 8._10). A square

possible patterns of parallel modular lines in space (Figure 8.72—¢). ] tartan grld.m which the smaller dimension is the basic unit size, (as in

Then the union of these three sets R,Z,* U Z,R,.Z, U Z,*R, is the the figure) is expressed by

three-dimensional lattice of modular lines, or the spatial equivalent of Figure 8.10
Martin’s basic module grid. R,(nZ,) U MZ)R, U R.(nZ,y) U (nZ,)R,

Figure 8.9

where Z, is the set {1,2, 3,4...}.

3 b This corresponds, therefore, to the union of a multi-module grid with
that same grid ‘stepped on’ one unit in both positive directions. For a
general tartan where the smaller of the pair of dimensions is @, then the
equivalent form is

R.(nZ,) U (mZ)R, U R(nZ,,) U (nZ, )R,

:%__ where Z,, = {0 + a, 1 + a,2 + a...}; and so the multi-module grid is
stepped on by a units.

Fi 8.8 . 5 . . 2 ;
E Finally, there is no necessity for a multi-module grid to be square, and it

may be convenient in certain design problems to take different multi-
modular intervals in the two perpendicular directions, to give a rect-
angular grid R, (n,Z,) U (n,Z,)R,, where n; and n, are some integers
(Figure 8.11).

We may give similar formal expression to some other types of grid
frequently used in modular practice. For example, we h.ave spoken of
the possibility of a hierarchy of modules, in which the size of each
‘multi-module’ is some integral multiple of the smallest unit module.

If the basic module grid is R,Z, U Z,R, (Figure 8.8a), then any square
multi-module grid will be given by R,(nZ,) U (nZ)R,, where nZ_ is the

o 209
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Figure 8.11

Figure 8.12

Plan of Farnsworth
House by Mies van der
Rohe

2710

By extension, there is no theoretical objection to the idea of taking two
different basic modular dimensions, to be used one in each of the
perpendicular directions — other than that the overall number of
different modular sizes is thus very much increased. This gives us a non-
square basic module grid; and an example of the use of such a grid in
practice is to be found in the famous ‘glass box’ house designed for

Dr Edith Farnsworth in 1950 by Mies van der Rohe (Figure 8.12).

The dimensions of the grid here are given by the shape and size of a
single component, a paving slab or tile, which measures 24 in by 33 in.
Since the slab is used in one orientation only, it thus establishes two
distinct sets of modular dimensions D(4) and D(b) where a = 24 in and
b = 33 in, given by integral multiples of these two basic sizes; and the
basic module grid is represented by R.D(a) U D(b)R,. The two sets
may not be mixed or combined. The sheets of glass which form the
walls, for example, must strictly be of two different widths, and a sheet
from one of the long walls could not be used in a short wall, if the

Figure 8.13

Figure 8.14

points whe.re the sheets meet are to fall on the grid. Nor can there be any
moc'lular_ dimension in the plan which is some combination of the two
basic units (n,a + n,b). '
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Except in a few special cases. If we look at the smaller terrace platform
we see that Mies produces a square spacing of supporting stanchions
with a bay that is 11a wide and 85 long. Since the ratio of a to b ’
(24in :33in)is 8 : 11, it follows that 11a = 8b (= 22 ft, which is the
lowest common multiple of a and b). Clearly, we could superimpose a
Iarge_ square multi-module grid whose dimensions would be higher
multiples of a = 22 ft, R, D(a) U D(a)R.. onto the smaller grid of the
repf:ated paving tiles. Note that the enclosed area of the house itself,
which might at first sight appear to be of 1 : 2 proportion, does not,,
however, fall on any large square grid. It in fact measures 14a by 205
and the actual proportion thus works out at 112 : 220, just slightly ot:f
the double square. The dimensions involved are not common multiples
of the two basic modular sizes (Figure 8.14).

11a 14a 224
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There is nothing especially significant in the proportions of the other
rectangles which Mies’s grid produces; only the square spacing of
stanchions, which depends on the existence of common multiples of the
two basic dimensions. We shall talk more about the question of pro-
portions later. Meanwhile let us go back to those general considerations
which enter into the choice of multi-modular or preferred dimensions,
and the general properties of their common factors.

\
Preferred dimensions are selected in some way from, and thus form a
sub-set of, a basic dimensional set D(a). There is a distinction in prin-
ciple here, between the selection of dimensions to be used in a particular
design or building system for perhaps a planning or structural multi-
module; and the general adoption throughout the industry of some more
limited range of sizes than, say, the Modular set M offers, and to which
many manufactured components would by preference conform. The
distinction is one of principle only, since, for example, the planning
module for a given building might be fixed by the size of some com-
mercially available component, or by the preferred sizes made use of in

a proprietary building system.

A combination of interrelated planning and structural module grids
serves to organize the layout and dimensions of a building. Such a
hierarchy of modules has been compared to the common systems of
coinage or weight, where particular units of value, of different orders of
magnitude, can be combined to make up any desired quantity; and
where often large quantities are rounded to whole numbers of the
larger units of measurement. But while, for the aims of the modular
coordination movement to be achieved, all buildings must conform to
the universal 100 mm module, the dimensions of larger types of grid
might, unlike units of coinage, quite properly vary in size, for good
practical and economic reasons, from one building or building type to
another. It is not feasible or desirable to fix standard planning or
structural modules. And yet on the other hand, in the broader problem
of component manufacture, it has been argued that the Modular set in
its entirety offers too many sizes. Significant economies in production
will only result from a further restriction of the range of sizes allowed.

Efforts have been made to find agreement, somewhere between the two
extremes, on a preferred range which would comprise enough suitable
sizes to cope with most of the typical manufactured items. The actual

8 Ezra Ehrenkrantz. The Modular Number Pattern; Flexibility through Standardisation,
London, Tiranti, 1956.

c}loice must be governed by a whole variety of pragmatic considera-
tions — what are the commonest forms of construction ? what are the
most frequently used dimensions in current practice ? — including all the
technical and anthropometric factors we mentioned earlier. But it is
reasonable to ask that, overall, the sizes be grouped closer together at
the smaller end of the series; and that there be some underlying rationale

to the range, governing the ways in which sizes may be added and
combined together.

.In the middle 1950s the European Productivity Agency launched an
international project to study problems of modular coordination and
standardization of dimensions for building; and most of the suggestions
made to the project in the various national reports were for ranges of

sizes constructed essentially upon different geometric series. A geo-
metric series has the general form:

ar® (= a), art (= ar), ar®, ar®, ar*...

that is, it consists of successive powers of some number r, multiplied by

a constant a. We express the set of numbers aG(r) in geometric series,
then, by

aG(r) = {x|x=ar',ieZ,}.

The proposal of the group from the British Building Research Station,
for example, consisted of a set of numbers which they called the
‘modular number pattern’ (described in Ezra Ehrenkrantz’s book The

Modular Number Pattern: Flexibility through Standardisation)® which

embodied as its principal features amongst other properties a simple
doubling series:

1,2,4,8,16,32... (successive powers of 2)

giving the set of numbers G(2) = {x | x =2¢,ieZ,};and asimple
tripling series:

1,3,9,27,81,243... (successive powers of 3)

giving the set G(3) = {x | x =3%,ieZ,}.
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Figure 8.15

~1 A

9 Buropean Productivity Agency Project 174. Modular Co-ordination in Building, Paris,
OEEC Publications, 1956.

The geometric series has the desired property, of giving small_er sizes
more closely spaced, with successively larger intervals occurring .
Hetween successively larger sizes. It appears that any one geometric
series on its own does not provide enough sizes to meet practical needs,
and so the problem is to select several which are simply interrellate('i, but
do not duplicate the same sizes too frequently. In the'ﬁrst publication®
of the European Productivity Agency project the various r;comme.nda-
tions of the national reports were summarized in a single diagram in
which doubling and tripling series were set out in triangular f orm, then
a further pair of doubling and tripling series formed from multiples of 5
laid out inside the first two:

8 20 45 27
16 40 135 81

and finally the whole triangular space filled in with series of the same
kinds running diagonally, the doubling series down and to the left, the

tripling series down and to the right:

1
2 5 3
4 10 6 15 9
g8 20 12 30 18 45 27
16 40 24 60 36 9 54 135 81

®
L] ® ®
® ® ® [ ] LJ
® [ ] ® ® [ ] L} ®
[ ] L] ® e [ ] ® ® ® ®
2 57'\ ,‘3_'],5,5_’7, .-51‘.’2‘ 2,3/ .2‘3/.3,- « 3
o 5%372!

Figure 8.15 represents the terms in the series by dots, and gives the
general term for each; an expression for the general term c?f the whole
pattern is given by 2i345% where j = 0 for the doubling series, i = 0 for

the trebling series, and k may take only the two values 0 or 1, so as to
multiply each whole series by 5, or not, as the figure illustrates. The set
of numbers contained by the whole pattern, which we might perhaps
call the European Productivity Agency or ‘European’ set E is thus
expressed by

E={x|x=235 ijeZ,, ke{0,1}}.

The numbers were intended to be multiplied by the basic 100-mm unit
to give actual recommended sizes for components.

There is nothing magical or mysterious here. All this means is, again,
that the smaller sizes are more closely spaced ; that in the nature of the
doubling and tripling series based on 5, we have fragments of a decimal
system in the range; that because 2 + 3 = 5, the multiples of 5 can
always be made up of combinations of equal numbers of multiples of

2 and 3; and that in general larger sizes can always be made up from
multiples of smaller ones, and specifically, that a large dimension can
be matched by either two or three units of a smaller size from the range.
Note, however, that a geometric series is not closed under addition; and
in the diagram above there are many pairs or groups of sizes we can
take whose sum is not a dimension in the range.

Curiously, although the aesthetic interest of the architect may be in
reducing the numbers of dimensions used in a building, so as to give his
design some simple rhythm or some set of proportions which can be
readily appreciated, it will be in the commercial interest of the manu-
facturer of building components to work almost in the opposite
direction. The manufacturer wants certainly to limit the number of sizes
of different items which he produces. But he would like to choose their
sizes such that by different combinations of component units the
greatest number of different larger dimensions can be filled; so that his
products are useful in the greatest variety of situations, and he can so
please the most customers.

To take an example. Suppose the manufacturer’s interest concerns
fitted cupboard units. He will probably produce them to dimensions
from the now generally adopted Modular set M of multiples of 100 mm.
But beyond this he would like it to be possible for a great number of
larger (modular) dimensions to be filled exactly by some combination
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Figure 8.16

Graph to illustrate com-
binations of units of
length 5 modules and 7
modules, and in particu-
lar how these units may
be combined to fill spaces
of 35 and 50 modules.

Figure 8.17
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or other of units. Thus, in the greatest possible number of situations, by
a judicious choice of widths for the cupboards, units can be placed
along the complete length of a wall, say, without gaps being left.

The question is, what widths should he choose ? For the sake of example,
let us suppose that the manufacturer makes only two widths of cup-
board, 5 modules and 7 modules (500 mm and 700 mm). We draw a
graph in which the two axes represent different numbers of the different
width units; the 5-module unit on the vertical axis, and the 7-module
unit on the horizontal (Figure 8.16). The lattice points indicate all the
combinations of units — one 5 and one 7, two 5s and one 7, two 7s and
one 5, and so on.

modules

35
CoLLrr e

7 cupboards

Now let us take some specific dimension to be filled. It is clear that a
space 35 modules wide could be filled either with five 7-module cup-
boards or seven 5-module cupboards (Figure 8.17).

We draw a straight line joining 5 X 7 on the one axis with 7 X 5 on

t_he other axis. This is the graph of the equation 7i + 5j = 35, where

i and j are integers. It intersects no lattice points, and this me;ms that
there are no intermediate combinations of some number of 5s with some
number of 7s which will make up 35. If we look at the graph of 7i + 5j
=50 on the other hand, the solutions which the diagram gives for this
equation are i =0, j = 10 (ten 5-module cupboards),andi =5, j =3
(five 7s and three 5s). (These are of course the positive solutions c;f the
fequatifm only, although algebraically the equation would have solutions
involving negative quantities, which have no meaning for our practical
application.)

Problems of this kind are called /inear indeterminate problems, and
equations of the form ia + jb = n are linear Diophantine equat’ions
after the Greek mathematician Diophantos whose known works i,n
particular the Arithmetics, are devoted to the study of rational an’d
integral numbers. For the Greeks ‘arithmetic’ had the special meaning
of the systematic investigation of the properties of numbers, today
tferme_d number theory. Diophantos was interested in finding rational
(1.e.. , including simple fractional) as opposed to just integral solutions to
various algebraic problems, and so from his point of view our linear
equations would have been rather trivial.

Problems to which integral solutions are required, on the other hand
crop up in the ancient folklore of mathematical puzzles in anecdotal ,
form, in Arabic, Chinese or medieval European sources, often virtually
tl?e same problem appearing in widely separated places dressed up in
different guises. Typically, one of these puzzles might ask ‘A man
spends £100 buying horses and cows. A horse costs £11, a cow £7. How
many of each did he buy ?” (117 + 7j = 100). Or the problem might be
to do with the way a bill at an inn is divided between people who pay
different amounts, or with the mixing of wine.

In the architectural context we can imagine a variety of situations in
which linear Diophantine problems might arise. What sizes should
prefabricated wall panels be produced in, so as to allow the greatest
flexibility in design ? In an office block of rectangular slab form, with
rows (?f rooms down either side of a corridor in a ‘band’ plan, v:/hat
combinations of widths of offices can be fitted along the length of the
building ? (Considerations of this kind could perhaps give some measure
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Figure 8.18

Graph of combinations
of dimensions (5i + 4j),
showing integral solu-
tions to 5i + 4j = n, and
illustrating how the equa-
tion has solutions for all
n > 12, the critical num-
ber. Actual combinations
of units of length 4 and 5
modules are shown dia-
grammatically below the
graph, filling progres-
sively larger intervals up
to the critical dimension
and beyond.
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of the flexibility of the plan in accepting different rearrangements of
rooms over the building’s life.) In a housing layout comprising rect-
angular street ‘blocks’ of fixed size, what are the ways in which plots of
varying frontage can be put together to fill the block length ?

Let us examine some more diagrams of the same kind as Figure 8.16,
which show up certain features of these Diophantine problems. We take
first two small modular sizes, 4 modules and 5 modules, and illustrate
what combinations they offer to fill increasingly larger dimensions
(Figure 8.18).

We may represent the series of equations 5i 4 4j = n, where n takes
various integral values, by a series of parallel lines at 45° to the axes, as
before, each line corresponding to the equation for a particular value of
n. It hardly needs saying that 4, and then 5, are the lowest values of n
for which the equations have solutions. Above that, neither » = 6 nor

n = 7 give integral solutions for i and j; n = 8,» =9 and n = 10 give
solutions; and n = 11 again does not. For » = 12 and above, as

Figure 8.18 suggests, and as may in fact be shown theoretically, every
higher dimension can be filled with some combination of 4-module

and 5-module units. This dimension, 12, above which, for these two
sizes of unit, every greater length can be filled, is called the critical
dimension (or, put another way, 12 is the critical number, for the number
pair 4 and 5). Below the graphs of the equations the actual combinations
of units are illustrated in diagrammatic form, arranged in rows and in
order of increasing overall length.

In the next example, we take the two sizes 3 and 6 (Figure 8.19). The
dimensions which this pair of sizes will fill are 3, 6, 9, 12, 15.... Any
dimension which can be filled by combinations of the pair can be filled
by 3-module units alone, since every 6 modules may be replaced by two
3s. And as the pattern of the diagram shows, it is on/y dimensions which
are some multiple of 3 which can ever be filled. We are looking for
solutions of the equation 2ai + aj = n (where a = 3), i.e., a(2i 4 j) =n.
Since 27 and j must be whole numbers (i and j are the numbers of units
of either kind), it follows that the equation has solutions only when 7 is
divisible by a. In our example, therefore, there can be no critical
dimension for the sizes 6 and 3 ; and in general we can say-that for a pair
of numbers to give a critical number they must be relatively prime, they
must share no common factors (beyond the ‘trivial’ factor 1).
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Figure 8.19
Graph of combinations
of dimensions (6i + 3j)

Figure 8.20
Graph of combinations
of dimensions (10i + 3j)
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10 P, H. Dunstone. Combinations of Numbers in Building, London, Estates Gazette, 1965.

For a final illustration, we take the two sizes 3 and 10 (Figure 8.20).
This pair has no common factor, and the critical dimension at which the
two sizes ‘spark’, is 18.

The “critical number’ for any pair of sizes a and b which are relatively
prime, is given by the expression (@ — 1) (b — 1); and below their
critical number CN, two component sizes can (where CN is even) fill
half the number of dimensions less one, or CN/2 — 1. In the example of
Figure 8.20, the critical number for the sizes 3 and 10 is (3 — 1) (10 — 1),
which is 18. And below 18 there are 18/2 — 1, or 8 smaller dimensions
which can be filled, as the graph verifies. Where CN is odd, the number
of dimensions filled is (CN — 3)/2.

The most exhaustive study of these problems is P. H. Dunstone’s book
Combinations of Numbers in Building,'® in which he not only describes
the theory of combinations but also tabulates the modular dimensions
which can be filled by a great variety of pairs of sizes, and of groups of
three sizes as well.
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9 Proportions and series

The principal concern of modular coordination is with the ratios of the
lengths of components in either one of the two (or three) directions of
the grid: the fact that a dimension between columns may be filled
exactly with some number of wall panels of given width, or that the
height of a window unit be equal to the height of some exact number of
brick courses, for example. Of course, with the square or cubic grids the
same component may be placed equally well in any of the perpendicular
directions. But there is no special concern with the proportions of
components — of, say, a rectangular door or window which might be
some dimension r,@ in width, and 7, in length — or with the proportions
of rooms, spaces or elevational arrangements which the grid determines.

This concern with lengths and ratios of lengths, with linear relationships,
distinguishes modular coordination from many of the historical number
systems employed in architectural design, where the greater interest
tends to be in the proportions of the shapes which the system produces.
Some of the proportional systems have incidental properties useful in
modular coordination, and vice versa. It is P. H. Scholfield’s view,
expressed in his book The Theory of Proportion in Architecture,! that

the common denominator of most systems used in fixing architectural
proportion, is an attempt at ‘the creation of order apparent to the eye
by the repetition of similar figures, and that this is accompanied by the
generation of patterns of relationships of mathematical proportion
between the linear dimensions of the design’. But it is best that these two
aspects are kept clearly distinct.

In this chapter we illustrate some of the various relationships which
exist between modules, grids, ratios of lengths, and proportions of
rectangles.

The basic module grid is illustrated again in Figure 9.1. To the left is the
basic square areal unit whose side length is a. The set of dimensions
D(a) allowed by taking all integral multiples of a is depicted below the
grid arranged out along the number line. In the lower half of the figure is
a representation, in increasing order, of their two perpendicular dimen-
sions, of the shapes of rectangular components (or areas, or rooms)
which the series of modular lengths allows. The proportions of these

1P. H. Scholfield. The Theory of Proportion in Architecture, Cambridge University Press,
1958.

Figure 9.1
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Figure 9.2

Plan of Palladio’s Villa
Malcontenta, with rooms
of simple whole-number
proportion

24

2 Rudolf Wittkower. Architectural Principles in the Age of Humanism, London, Tiranti,
1962.

rectangles must always be simple ratios of whole numbers, of the general
form (n,a): (ma) = ny: my. But other than this, there is no restriction on
the proportions of (rectangular) shapes possible.

It is quite conceivable that a system of modular coordination be applied
in a building of non-rectangular geometry: where the linear dimensions
used in the design might be restricted to some limited set, but the shapes
of components or rooms might be triangular, say, hexagonal, or even as
in a surprising example we shall describe later, circular. But rectangular

buildings are sufficiently in a majority for us to restrict discussion to
them alone, for the moment.

The systems of proportion of the Renaissance, as Professor Rudolf
Wittkower has described in Architectural Principles in the Age of
Humanism,? depended essentially on the simple whole number or
‘commensurable’ ratios of Figure 9.1. The process by which the ratios
were derived was rather different, there being no suggestion of an under-
Iying grid, but instead the larger overall dimensions of the building
being divided in suitable ratios in order to determine the breakdown of a
plan or elevation into its subsidiary parts. The effective basic modular
size implied by this process would therefore vary from building to
building. There was held to be some correspondence between the simple
numerical ratios used in architecture and the ratios (of the lengths of
strings, in stringed instruments, for example) underlying musical
harmony; with the suggestion that what was pleasing to the ear would,

by analogy, be pleasing to the eye.

gl
3:4 [ 3:4
REEPES U RN (S B3
1:1 2:3

Figure 9.3

3 Leone Battista Alberti. Ten Books on Architecture, p. 142.

Lgter, e'specially in the work of Palladio, this method of dividing larger
dimensions into smaller parts according to the ‘harmonic’ ratios of
whole numbers which the musical analogy suggested, was turned the
other way about. Instead, Palladio would, in his villa plans (Figure 9.2)
first determine a series of proportions for individual rooms — typically ’
for example, in such ratios as 1: 1 (square), 1: 2 (double square), 2: 3 ,
3:40r3:5 — and then assemble these rooms in an essentially additiv:e
procc.dure, so that the resulting overall dimensions would be somewhat
fqrtultous. The illustration of the series of possible rectangular shapes in
Figure 9.1 shows just those additive properties which Palladio’s method
depends on: for just as the lengths from the D(a) series can be added to
make larger members from the series, so it follows that any two (or
more) rectangles from any row or any column of the diagram can be put
together to form another rectangle from that row or column (Figure 9.3).
This is analogous to the condition for the stacking of two panels that

we prescribed in Chapter 6: that they exist within the same band, where
in this case the rows and columns of the figure are, in effect, bancis.

3:4 3%5

The way in which, in the proportional systems of the Renaissance
smaller parts of the design were determined in size by successive s;b-
divisions of the whole or of larger parts, tended to give rise to geometric
pfogressions like the ones forming the European Productivity Agency
diagram — the European set —illustrated earlier. Alberti® described the
base of the Doric column: “Thus the height of the whole base was three
times that of the die, and the breadth of the die was three times the
height of the base.” (1:3:9).

Ip rgeasuring the proportions of the human figure, which had such
significance asa model for the ideal relationship of the parts of a design
to the whole in Renaissance art, geometric progressions were also
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Figure 9.4
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43, P. Richter and I. A. Richter. The Literary Works of Leonardo da Vinci, London,
Oxford University Press, 1939. vol. 1, p. 245.

5 Leone Battista Alberti. Ten Books on Architecture, p. 199.

6 Le Corbusier. The Modulor, p. 26.

7 Heinrich Wolfflin. ‘Zur Lehre von den Proportionen’ 1889, reprinted in Kleine Schriften,
Basle, 1946.

sought. Leonardo finds doubling and tripling series in the proportions
of the human face.* He also subdivided the whole body into three
braccia or arm-lengths, the braccio into three faces, and the face into
three smaller units still: part of the descending geometric series, in effect

on 5 (=1 3(-3) B

In the series of ratios proposed in theoretical treatises, and in those

found employed in actual building practice, different geometric series
occur again and again, sometimes fragments only of one series, some-
times a doubling and a tripling series or more complex combinations,

used together.

There is no doubt that Alberti, for one, recognized that a simple process
of halving or division by three would give rise to relationships in the
design which would be most readily appreciated visually. He makes a
plea that the ratios chosen should not be used ‘confusedly and indis-
tinctly, but in such a manner as to be constantly and in every way
agreeable to harmony; as for instance, in the elevation of a room which
is twice as long as broad, they [architects] make use, not of those
numbers which compose the triple, but of those only which form the

duple...’.5

Figure 9.5

It is in this sense that the series is geometric: since the ratio of two
successive terms is always the same, s0 the shapes of rectangles with
these dimensions are always similar. Herein lies the significance of those
familiar proportional analyses of paintings, or the fagades of buildings,
where a net of diagonal lines is placed over the design, joining key

points in the composition — what Le Corbusier® calls (following Auguste
Choisy) the tracé regulateur (regulating lines). The purpose is generally
to demonstrate the repetition of similar rectangular figures in the
design’s underlying structure. When two adjacent rectangles of the same ‘
proportion are found in two orthogonal orientations, then their two %4
diagonals come together at a right angle; and Le Corbusier describes '
the composition as being commanded’ from these points, les lieux de

Pangle droit. The art historian Heinrich Wolfflin,” among others, has

made such analyses of classical and Renaissance buildings, where it is

well established that geometric systems of proportion were applied

consciously in their original design. Others have studied the shape of

Figure 9.6

@ ;
As for example Jay Hambidge, Dynamic Symmetry; the Greek Vase, Yale University

Press, 1920, or Mati i
Press r Matila Ghyka, The Geometry of Art and Life, New York, Sheed and Ward,

)
P. H. Scholfield. The Theory of Proportion in Architecture, p. 51.

vases in the same way, or the proportions of the human face and figure ;2
b

but here it is more questionabl ; I
it e, q e what the supposed findings of analysis

C.unously_, the number 4/2 occurs occasionally in Renaissance propor-
tion, despltf: the musical analogy and the general emphasis on who?e
pumber ratu?s. As Scholfield says, ‘The occurrence of the 4/2 rectangle -
is embarrassing if we are trying to attribute to the Renaissance a con%
sistent theory based wholly on commensurable proportions.’® It seems
however, that the lingering influence of some remarks of Vit.ruvius ma ,
be respon§ible for the inconsistency, and that the simple geometrical g
constr.uctlon by which the rectangle may be produced, by making the
long side equal to the diagonal of the square on the shi)rt side mg
account for the interest in the 4/2 proportion. e

—L

4/21s a'n irrational number, that is, it cannot be represented exactly b
any.ratzo of two integers. The proportion of the rectangle whose siﬁe ‘
are in the ratio 1: 4/2 is nevertheless interesting. We take a 1: 4/2 :
rectangle and double its shortest side; and so produce a new ;ectan le
whose proportionis 4/2:2 = 1: 4/2. This is therefore a rectangle OJ%

the same proportion, but twice the
] i area. Looked at another i
the solution to the equation 1/x = x/2. V2

V2 v2:1 |+ v2:1 | > 12

In t}l:elsame. way we can double and double again indefinitely and derive
a whole series of similar-shaped rectangles whose areas this time form a
geometric series, 1 unit, 2 units, 4, 8, 16....
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/Figure 9.7 \

' International standard A
series paper sizes, of
1: 4/2 proportion
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'S\* It is this proportion which is used for the new intex.'nationally adopted

" standards for paper sizes, known as 4 sizes, in which all sheets are of
1: 4/2 proportion. The series in this case is in actual fact. constructed
downwards, from a largest sheet 4, of one square metre in area. The A,
sheet is halved and halved again to give smaller sizes .Al, A,y As. - down ‘
to A, which is about the size of a postage stamp. 4, is a sheet slightly .

smaller than foolscap (Figure 9.7).

If we take the dimension of the longer edge of the biggest, Agsheet a2s a,
then its shorter side measures a/+/2, and thus the area a .(a/ V/2) = a?[v/2
— 1 m2. The whole set of 4-size sheets can be expressed in the usual

notation as:
A= {4; l i=0,1,..,9, 103. Figure 9.8
Each sheet, 4;, in the series may be mapped onto its dimensions x; and ¢ ¢ <
¥, thatis,
A;—>(xiy:) € R? 1
. — i = 2)i+1,
where x; = a/(1/2)* and y; al(»/2) Pl v
For example, 4, has dimensions (a/(1/2)%, a/(v/2)°) = (a/4, al4A/2). 1 (¢ —1)

There is no question here of several sheets fitting together in any way,
like building components. The practical significance of the restriction of
dimensions of paper sizes is rather that printers can produce the smaller
sizes from standard large sheets without waste, by simply cutting or
folding them in half and half again. And one practical purpose of the
constant proportion of the shape of sheet, besides the possible aesthetic
significance, is that in any kind of enlargement or reduction of photo-
graphs, maps or plans, for example, what fits onto an 4-size sheet at one
scale will fit onto either the sheet two sizes larger or the sheet two sizes
smaller at exactly double or half that scale, respectively.

o
Incidentally, there is nothing unique about the number 4/2 in giving rise

to patterns of nested rectangles like the 4-sizes. A very similar kind of
system with a basic unit of proportion 1: 4/3 would mean that when the
smaller side was tripled a larger rectangle of the same proportion 1: /3,
but three times the area, would result (1/x = x/3). And similarly for
systems based on 1: 4/4 (=1:2), 1: 4/5, and so on.

N T O T
There is one number, however, with rather special properties, which
occurs repeatedly in the nineteenth- and twentieth-century literature of
architectural proportion, around which a great mystique has arisen,
and which also produces a set of nesting rectangles like the 1: /2

I/ series. This is the celebrated ‘golden number’ ¢, the basis of the ‘golden

section’ and the ‘golden rectangle’. It is another irrational number, it is
the solution to the equation x* — x — 1 = 0, and its approximate value

?F‘ is1-618.

The golden rectangle, with sides whose lengths are in the ratio 1: ¢ has
this property : that this ratio of the length of the smaller side to the
greater is equal to the ratio of the length of the greater side to the sum
‘of the lengths of the two sides, i.e.,

1é = /(1 + ¢) %
sothat1 + ¢ = ¢

whence ¢ — ¢ = 1.

If we divide the golden rectangle into two parts by a line perpendicular
to its longer side, such that one of the two smaller resulting rectangles is
a square, then it follows that the proportion of the second rectangle is
(¢ — 1): 1 (Figure 9.8).
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Figure 9.9

‘Whirling squares’
pattern produced by
nesting golden
rectangles, or stacking
squares

as

set aG(4)

RETE i i i ] E—

DL

ad®

as*

Figure 9.10

10 Jay Hambidge. Dynamic Symmetry; the Greek Vase, Yale, 1920, p. 18. See also The
Elements of Dynamic Symmetry, Yale University Press, 1926 (new edition 1948).

1 P. H. Scholfield. The Theory of Proportion in Architecture, p. 138.

But by multiplying both top and bottom of the expression (¢ — 1)/1 by ¢,
we get (4> — ¢)/¢; and from the equation above we know that ¢* —$=1.
So (¢ — 1)/1 = 1/¢, i.e., this smaller rectangle is itself a 1: ¢ rectangle.

The golden rectangle may thus be divided into a square and another,
smaller, golden rectangle. On this depends the nesting property which
we refer to. Starting with a ‘unit’ golden rectangle, we add a square to its
longer edge to give a larger golden rectangle. The process can be
repeated indefinitely, and a pattern of the kind illustrated in Figure 9.9
results.

Some writers seem to have become mesmerized by this pattern of
‘whirling squares’ (as Jay Hambidge!© calls it). It is worth noticing,
however, that we can achieve a similar effect with any proportion of
rectangle we care to choose. We take a rectangle of proportion 1: x.

- We add to it a second rectangle of Elpg)_r‘tion x: y. To satisfy our

condition for nesting or stacking we require that the new larger rectangle

formed from the two is itself of proportion 1: x again, i.e., that

Figure 9.11

x|y +1) =1/xorx2 —y — 1 =0 (Figure 9.10).

Any value of x substituted in this equation will give some resulting value
for y; and the golden rectangle is only the special case where x = y, and
therefore where the pattern is made up by adding squares. We take a

1: 2 rectangle just for example, i.e., x = 2. This gives y = 3, and we can
then create a stacking pattern by the successive addition of 2: 3 pro-
portion rectangles (Figure 9.11).

[Se]
w

5]

2:3

1 3

Scholfield!* has given the name 6 to an irrational number related to ¢
which has cropped up on occasion in proportional systems, and which
corresponds to a pattern produced by the addition of double squares,
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12 eonardo’s great work is Liber Abacci, a compendium of arithmetical and algebraic
knowledge, which survives ina manuscript from 1228. The rabbits problem is quoted from
the English translation of N. N. Vorob’ev, Fibonacci Numbers, Oxford, Pergamon Press,
1961, p. 2.

i.e., where y = 2x in our equation. The resulting value is approximately
9.414. This is the beginning of another series of numbers, where y is
equal progressively to x (givingthe 1: ¢ proportion), 2x (giving 1: 0),
3x,... nx corresponding to the stacking of squares, double squares,
triple squares and so on.

To go back to Figure 9.9: there is no suggestion of a grid of repeated
dimensions underlying the nesting of golden rectangles. Nor are the
lengths of sides of the rectangles formed from integral multiples of
either @ or ag, the sides of the ‘unit’ rectangle, in the way which we saw

%kin Figure 9.1. There are, however, interesting additive properties in the

series which fl}@gélierigﬁhs constitute. If we arrange the dimensions in

order of increasing size, irrespective of their orientation, we have:

1, 1-618, 2618, 4-236, 6-854, 11-090...
(to three places of decimals only).

If we add the first two terms together (1 + 1-618) we get the third,
2.618. In the same way the second and third terms added (1-618

4+ 2-618) give the fourth, 4 236; and so on. This follows from the way
the golden rectangles nest in the pattern. Each successive term is the
sum of the preceding two, and in general if u,, is the nth term, then

Up + Uni1 = Unie:

- Thisisa Fibonacci series, named after Fibonacci, otherwise Leonardo

of Pisa, ‘the only outstanding European mathematician of the Middle
Ages’. Leonardo first illustrated the development of the series of
Fibonacci numbers in relation to an ostensibly practical, if somewhat
unrealistically stated problem to do with the breeding of rabbits.’?
‘Someone placed a pair of rabbits in a certain place, enclosed on all
sides by a wall, to find out how many pairs of rabbits will be born there
in the course of one year.’ The rather artificial assumptions which
Fibonacci made were that every month a pair of rabbits produces
another pair; that rabbits begin to bear young two months after their
own birth, and that no rabbits die during the year.

At the start of the experiment there is one pair only. In the first month
they produce young, so that there are now two pairs. In the second
month the younger pair have not begun to breed, but the original pair

produge another pair to bring the total to three pairs. In the third month
th'e pair born in the first month reach breeding age. The original pair are
Stll‘l producing too, so the total now reaches five pairs. Of these five
pairs three produce offspring in the fourth month, bringing the total to
eight pairs. Of the eight pairs, five have offspring in the next month,

giving thirteen pairs, and so it goes on. By the end of the year the total
has reached 377 pairs.

If we put these numbers down in order
1,2,3,5,8, 13...

we have the Fibonacci series based on the first two positive integers for

 its first two terms. But equally we could produce series of the Fibonacci

type with some quite arbitrarily chosen pair of numbers, for example
7 and 10, the rule being that each successive term is formed from the
sum of the previous two:

7,10,17,27,44,71...

If the first tvyo terms of any Fibonacci series are u, and u, it is clear then
that successive terms will be of the form: '

Up, U, (llo + ul)! (uO + 2“1)3 (Zuo + 3u1), (3”0 + 5u1)...

so that the vs.lhole set F(uo, u,) is determined by the initial choice of u,
and u,, and is given by the expression

F(ugu)) = {x € R, | X = g, ty OT U + Usy = Uj o, ieZ,}.

All FI.IC terms are of the general form (m,u, + nyu;) where n; and 7, are
positive integers. But it does not follow that the Fibonacci series is a set
vyhich is closed under addition, since there are many ‘linear combina-
tions’ of #, and u, which are not found in the series. It does not contain,
f9r t_axample, the term 2u, or any higher integral multiples of u,; and
similarly for u;. Nor does it contain such combinations as (Quq + 2uy),
(Buo + 2uy), Buo + 3uy).... Indeed n, and n, are themselves successive
terms of a Fibonacci series.
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13 The inception, development, principles and application of Le Corbusier’s system are
described, with a mass of anecdote and digression by the way, in Le Corbusier, The
Modulor.

To return to the Fibonacci series generated from the pair of numbers 1
and ¢: we wrote these out before as numerical approximations in
decimal form. But we know from our earlier demonstration that the
third term in the series, (1 + ¢) must equal ¢2. The fourth term (1+29)
can be rewritten ¢ + ¢2, which is #(1 + ¢) or $°. The fifth term is
similarly $* and so on: and the whole series can be represented more
economically in geometric series as successive powers of ¢:

1,$,¢% 6% % ¢°...

Le Corbusier’s proportional system, the Modulor, consists of two inter-
related series of preferred dimensions.!® Again there is no suggestion of
a unique repeated grid unit and any of the dimensions in either of the
series may be used together with any other. Le Corbusier calls the two
series the Red and the Blue; they are both Fibonacci series. The Red
contains as one member the key dimension corresponding to the height
of the ‘six foot detective’, and which Le Corbusier converts into the
metric equivalent of 1830 mm (in round figures). A second dimension is
introduced, 2260 mm, which Le Corbusier shows (in his famous sketch
of the human figure (Figure 8.2) which is the Modulor’s ‘trade-mark’) as
being the height a man can reach with his arm stretched upwards. This
second basic size belongs to the Blue series. It is halved, to give 1130 mm;
and 1130 constitutes the next lowest term in the Red series. We can
begin to see how the two series interlock.

1130 1830
Red | 111 | l

Blue l | | | l

, 1130

w 1130 J
< VA

7/
2260

With two consecutive members of the Red series given, 1130 and 1830,
we can construct the whole series both upwards and downwards.
(1830 — 1130) gives the next lowest member, 700; and by 2 similar
process of subtraction the series is given in descending order as 1830,
1130, 700, 430, 270.... Working upwards from 1830 by adding terms,
we get 2960, 4790, 7750 and so on. The relationship of the Blue series
to the Red series, as was indicated in halving the basic Blue dimension

to give a Red one, is that each of the Blue sizes is twice some corre-
sponding Red dimension. Besides 2260 mm, the Blue series thus contains
1400, 860, 540, 320... in descending order; and can be constructed
upwards beyond 2260 by addition of successive terms as before, or by
doubling appropriate Red sizes. ’

To put. this in formal notation, if b, is the general term in the Blue series,
and r; is the general term in the Red series, then

b; + biyy = biye
it Fign = Fige
and 2",' = b,;.

B}lt the.Modulor is more cunningly constructed yet. We have given the
dlmc?,nsmns in the two series rounded to the nearest whole number of
centimetres. But by a very careful choice of the two key sizes, as
measured to a greater accuracy, Le Corbusier has in point of fact
ensur_ed that each of the two Fibonacci series is a ¢ series. If we call the
k.ey size in the Red series d (d = ‘6 foot detective’), then the next largest
size is ¢d, and the series working upwards is given by

d, ¢d, (1 + ), (1+24)d, 2+ 3¢)d...

or rewritten, as before:

d, ¢d, $*d, $3d, ¢%d... We put Cred = dG(¢).

The Blue series then becomes simply:

2d, 2¢d, 2¢4%d, 24%d, 2¢%... CBlue = 2dG($).

The dimensions in the series below d and 2d respectively are given by
d/¢:, d|¢?, d(¢3... and 2d/¢, 2d|¢?, 2d|¢*... and the complete ‘Corbusier
set’ C of all dimensions from the Modulor is written

C =d(G($) U 2G(9)).
In Figure 9.13 we show the series of different shaped rectangles which
the Modulor produces, distinguished (by shading in the figure) into three

separate groups. There are rectangles whose side lengths are drawn only
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Crea= dG(¢)

Cone= 2dG(4)

Figure 9.13 ]
The Red and Blue series
of Le Corbusier’s Modu-
lor, and the various pro-
portions which the sys-
tem gives rise to. There
are three groups:

rectangles whose side
lengths are drawn only
from the Blue series
(shaded in one direction),

rectangles whose side
lengths are drawn only
from the Red series
(shaded in the opposite
direction),

those proportions pro-
duced by taking pairs of
dimensions, one Red and
one Blue (shading super-
imposed).

d dp db®  dg® det dzlia"’

. I

l | |
| 2!1 2up 2gr 28 24+

2d$®
/ < 2 % C ‘t'o'o':ozozq
A m 7] B
7.
d$ 1:4

2d I ¢\

dg*

1: ¢

2d$

2d4*

14 Christopher Alexander. ‘Perception and Modular Coordination’, RIBA Journal,
October 1959, pp. 425-9.

15 Christopher Alexander quotes the experiments of G. T. Fechner reported in Vorschule
der Aesthetik, Leipzig, 1876, pp. 190-202; and of T. R. Austin and R. E. Sleight, Journal
of Applied Psychology, vol. 35, 1951, pp. 430-1.

from the Blue series (shaded in one direction), and the same for the Red
series (shaded in the opposite sense); those shapes produced by taking
pairs of dimensions, one Red and one Blue, to form the two sides of
each rectangle, are shown with both types of shading superimposed.

Viewed as a proportional system, the Modulor gives repeated golden
rectangle proportions, as we see, with the ‘Blue only’ and ‘Red only’
combinations, and double squares where the two series are mixed —
besides many other proportions of a more complex nature. The additive
properties of the Modulor which would be useful in modular coordina-
tion are also shown up in the figure. For each separate group of rect-
angles, since their side-lengths in increasing order of size along any
column or row are in Fibonacci series, it follows that any two adjacent
rectangles in a column or row can be ‘stacked’ together to form the next
in that row. (It is not, however, possible to combine a rectangle from one
group with any rectangle from one of the other two groups, and produce
another rectangle contained within the whole repertoire.) Looked at the
other way round, it is a consequence of taking the Fibonacci series based
on ¢ that any large dimension in one of the series may be broken down,
first into the golden section 1: ¢ ratio, and then each of these two sub-
divisions filled with some whole number of small modular dimensions.
Finally, the Modulor — because of its original derivation from sizes
which are, somewhat loosely, determined from measurements of the
human body — does acknowledge the ergonomic factors which must
enter into a practical choice of modular dimensions.

Christopher Alexander, in a most lucid and penetrating article, ‘Percep-
tion and Modular Coordination’, has suggested that the aesthetic
significance of systems of architectural proportion like the Modulor
and others depends on rather general properties which they share in
common, rather than any special properties of the numbers found in
each system.!* In particular, he debunks much of the mythology and
superstition which has surrounded the golden number ¢. As he says,

it is ‘an unaccountable empirical fact’ that the particular shape of the
golden rectangle pleases the eye (as psychological experiments have
certainly indicated),'® but that nevertheless people are unable to dis-
tinguish in practice between a golden rectangle and a rectangle which
differs in proportion from it by 3%, or 49, ; so that one can make no
appeal to the special numerical properties of ¢ as an explanation of
people’s preference for the shape. It has been suggested in the past that
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16 Bdgar Kaufmann, ed. An American Architecture. New York, Horizon Press, and
London, Architectural Press, 1955.

the fact that ¢ is an irrational number means that the incommensurable
ratios which it gives rise to result in ‘dynamic’ proportions as opposed
to the “static’ appearance produced by integral lengths. But this of
course is sheer play with words. An object in the real world can have a
length which approximates to ¢ but must, in the sense that it is measured,

fﬁ::;: ret:adily bent into curves of different radius; and indeed this gives
eet structural strength, where used flat it would require bracing

;1:: pl'y:v'oo.d, howeYer, has a double function. It is used as a structural
erial in its own right for the rooms. And it is also used to make the

be a rational quantity. Irrational numbers are purely abstract concepts. Figure9.14 cylindrical formwork into whi
There is no sense in which one can see Of measure the ‘irrationality’ of a ;I:rr:?ekctlt“gyling}gter pool and other parts an o which the concrete walls of the swimming
proportion or ratio based on irrational numbers. House (1938), plan re cast; including the formwork for the ‘poured

masonry’ it gi
y’ columns. The one unit gives the measure, therefore, for the

The only real effects of the use of a proportional system which may be
appreciated visually, in Alexander’s view, result from the general ways
in which the limitation of the number of dimensions used in a building’s
design to some preferred set can produce an appearance which — because
of the repetition of similar shapes, lengths, simple whole number

ratios — we must, in a broad sense, call ‘ordered’. ‘Thereisa lack of
confusion. A certain simplicity. Relations between the parts.’

]

1
breakfast

lounge \ \

Lest we should leave the subject of proportional systems and modular
planning and give the impression that their use is confined uniquely to
rectangular geometry, We shall end this chapter with some startling
evidence to the contrary. This is the promised example of a system
based on the circle; in a design which on the face of it would appear to
represent the very extreme of romantic arbitrariness.

The design in question is Frank Lloyd Wright’s project for a house for
Ralph Jester in Palos Verdes, dating from 1938 (Figure 9.14). The plan
is presented in the anthology An American Architecture*® over the motto
“Exuberance is Beauty’. The house consists of a series of separate : o :
cylindrical pavilions for the rooms, grouped around a patio which is N . j ...................................... roof &
open to the outside, with a protecting rectangular roof linking the yard -
composition together. Two principal materials are used: thin curved

plywood sheets for the circular rooms and concrete in the substructure

of the curved terraces and swimming pool. The very massive cylindrical

columns, 4 ft in diameter, would have been built from Wright’s ‘poured swimming pool
masonry’ —large local stones set roughly in concrete — as used in many

of his Western houses, including his own Taliesin West.

diving

The basic unit module for the plan is given by the dimension of the
standard 4-ft wide plywood sheet — the size in which it comes from the
manufacturer. Because plywood is a thin supple material the same sheet
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Figure 9.15

The set of circles em-
ployed in the plan of
Wright's Jester House,
indicating the whole
number of arc lengths
into which the circum-
ference of each is divided,
to correspond to the
standard dimension of
the bent plywood panels

»,

™,

radius (in feet): 32

\%%:Eg& s~

dimensions of the whole design. We can set out the various diameter
circles which the plan comprises in the concentric arrangement of
Figure 9.15. The figure shows the relation between the radius of each
circle used in the design, to the whole number of arc lengths into which
its circumference is divided, giving the positions in which the plywood
panels are fitted.

It will be seen from the plan drawing that the repeated circular pattern
of the rooms and columns is related together on a square grid. The grid
dimension here is again 4 ft, and the centres of all circles lie on grid
points, with their diameters always exactly some grid dimension, that is,
some multiple of 4 ft. Wesetup a table to illustrate the relation between
the number of arc lengths and the radius of the circle for each of the
sizes included in the complete repertoire. Note that, ignoring the first
terms (radius 2, number of arc lengths 3, respectively) these are
Fibonacci series.

radii 2 4 8 12 20 32 r

\. omberofarclengths 3 6 12 18 30 48 n =312

The number, n,, of arcs of radius r and length a is given by the equation

2wr =n.a.

When n, = 3r/2, as we have it in the Jester House, then

27 r = 3raf2
so that the arc length is given, in feet, by

a=4n[3
=4-18.

Wri]ght uses the standard 4-ft wide plywood panel, formed to the radii
we have .hsted 'al?ove, to fill each arc intended. This leaves a tolerance of
about 2 in for joints, door frames and mullions.

Llet S be the set of all 4-ft wide plywood sheets and J be the set of
plywood sheets, s,, of radius  (in units of 1 ft) employed for the walls

d (o) W . T

J={s,eS|re2orF(0,1)}

This shows that the system neatly marries the 4-ft s i i
governing ‘the location of all straight walls (5e) andqtlllla:zelzll;l:sn:fg rigicil ,
with t.he Fibonacci series F(0,1). For detailed planning Wright also ’
p?r.m.lts the use of a half-module radius of sheet and a simple halving
division, G(2), of the planning grid. The ingenuity of the Jester set, J, is
such that we are inclined to credit Wrigh* with having ‘solved’ the’ ’

impossible mathematical problem of s i seslal
. uar :
tional project. quaring the circle in this excep-
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Figure 10.1

The Konigsberg bridge
problem, with Euler’s
representation of the city
and its bridges as a graph

10 Planar graphs and relations

The Swiss mathematician Euler is acknowledged as the t"ather of the
theory of graphs, and some of the popular puzzles to whlch the earliyé1
theory was applied, for instance the problem of the Konigsberg bridges,
with which Euler introduced his first paper,! are per.haps not t,oo remote
from matters of architecture, or at least town plan.x.m.lg. Euler’s problem
depended on the particular layout of the city of_ Koénigsberg (no“'/
Kaliningrad) in Prussia, which stands on the River Nagel.. The d}ﬂ”erent
parts of the city which lie on either bank, between a.f ork in the river,
and on the island of Kneiphof, were joined at that Flme by seven br'xdges.
Was it possible to take a walk around the city startl_ng from any pomth
and, crossing all the bridges, each only once, to arrive back home at the

same place?

C

i i he most important
Since the bridges are, for the sake of the pr.oblen.l, t : !

features of the plan, Euler devised a simplified dlagrar.n in which the four
parts of the city were represented by points and the bridges by appro-
priate lines joining these points.

This type of simple geometrical figure o.f points ar_ld lir}es is the ¢ gra-ph’
of graph theory. (The term has two distinct meanings in mathen.lat.lcs. i
More usually, of course, it describes a diagram §hovy1ng th<.3 variation o
one quantity with another of whichitis a fun.ctlon', in relation to some
system of coordinates —a graph of speed against time for .example, to
show acceleration.) The points in a graph are termec.i vertices, and the
lines, or more strictly line segments, joining the vertices, are edges.

11n the 1736 volume of the publications of the Academy of Science in St Petersburg.

c

Figure 10.2

In Euler’s diagram the graph is in effect a simplified map, and in general
it is possible to represent any kind of route map as a graph, where the
edges are roads (or railways, or footpaths) and the vertices junctions.
But there are some important points here. The actual way in which the
graph is drawn is of no significance to the theory. The vertices may be
placed anywhere in the plane, and the edges need not necessarily be
straight, or of any fixed length. In the case of a road map, the edge in
the graph indicates simply the existence of a road between two points,
and not the exact direction which it takes or how long that road is.
Euler’s graph shows simply which bridges join which parts of Konigs-
berg, and nothing more. In general, the edge represents some relation-
ship, of whatever kind we may be interested in, between the two objects
signified by the vertices. We could use a graph to represent a chess
tournament — the players by vertices, and the games played between
different opponents by edges. Graphs have been used in the theory of
electrical networks, to denote the structure of human organizations or
social groups, and even in the scientific study of decision-making —
where vertices signify the decisions to be made and the edges determine
the necessary relationship which one decision bears to another.

The value of the graph lies in the capacity it has for showing up the
essential structure of a set of relationships. In the Konigsberg problem
we know that we must arrive in each part of the city (a, b, ¢ or d) the
same number of times as we leave it — otherwise we would never get
back to the starting point. Since we may only cross each bridge, or
traverse each edge of the graph, once, this means that for there to be 2
possible route the number of edges joined to or incident with each vertex
must be even. This is true for none of the four vertices a, b, ¢ or d, and
so the problem has no solution, as Euler demonstrated.

It is quite permissible to draw a graph with some edges crossing (without
their intersections being vertices) — although it may perhaps be con-
fusing. Graphs that it is possible to draw without the edges intersecting
are called planar and it is often convenient to redraw such graphs in this
form, for the sake of clarity. (To take an elementary example, the graph
of four vertices a, b, ¢, d of Figure 10.2 is shown in such a way that the
edges (a, b) and (c, d) cross. Despite this, the graph is planar and may be
redrawn in the form beneath.) Since the same graph may be drawnina
variety of ways, it follows that two graphs (G, and G,) which are
apparently at first sight dissimilar, may prove to be identical when
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Figure 10.3

Graph of the ‘utilities’
problem, or the problem
of houses and wells

Figure 10.4

analysed. In this case they are termed isomorphic: that is, if they have
the same number of vertices, and wherever two vertices in G, (say a,
and b,) are connected by an edge, then there are two corresponding
vertices d, and b, in G, also connected.

A classic graph theory puzzle, and another with almost architectural
aspects, is the so-called “utilities’ problem. In 2 typical form the puzzle
concerns three houses and three wells. The wells (x, y and z) are apt to
dry up, so the occupants of the houses (a, b and ¢) who do not, inciden-
tally, enjoy each others’ company, wish to be able to use whichever well
is full ; but without meeting their neighbours on the way. The problem
consists therefore in planning nine footpaths, one from every house to
every well, in such a way that no footpaths cross.

a h ¢
houses

wells

X y z

Again there is no solution. However we draw the footpaths, there are
always at least two that cross. The required graph is non-planar.

Figures 10.5 and 10.6
The Jordan curve

K

Figure 10.7

We' can Sl.‘lOW the reasons for this by invoking the Jordan curve theorem
whnch‘m itself might appear trivial. Suppose K is a continuous closed
curve in the plane. Then K divides the plane into an outer and an inner
pal.'t S0 ?hat whenever any point p in the inner part is connected to a
p01_nt. g in the outer part by a continuous curve L, then L intersects K.
'.l’hls is pe-rfectly self-evident, and has the equally clear implication th-at
if two points p and g on a closed curve K are connected by a curve L

which does not otherwise intersect K, th ies ei
. then L lies either ¢ insi
or completely outside K. ompletely fnside

K

Now let us redraw the houses and wells in such a way as to make use of

tlllese facts. The footpatl}s (a, 2), (z, ¢), (¢, x), (x, b), (b, ), (¥, @) form the
closed Jordan curve. This cycle of edges is expressed more compactly by

the notation (a, z, ¢, x, b, y, a).
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Figure 10.8

2 Qystein Ore. Graphs and their Uses, New York, Random House, 1963, pp. 14-17.

i ioinatox,btozand ctoy.(a, x) can lie eithe'r inside or
f)tlfteslilcli?:l;et ::)I;Jlrve, as can (b, z). In order tha.t they shall not intersect, one
must lie inside and the other out. (Thistoo is <_:apa.b1e of proof by t;xe
theorem.) Suppose (4, x) is on the outside, as in Figure 10.7; the edges
(a, %), (x, ), (b, 2), (z,a)now forma second closed curve (@, X, b,, z, ),
with y on the inside and ¢ on the outside of the curve. By J ordat;( s
theorem (c, y) must therefore intersect one of the four efig?s making upt
this second curve, as Figure 10.8 makes f:le?.r. Exactly S1.m11ar aggltmen S

apply if the positions of (a, x) and (b, z) inside and outside the firs

curve are reversed.

a

This demonstration of why the utilities pro.b.lejm is without.solut'xon
comes from Ore.2 It has the name of the utilities problem sm_cc., in
another form, it concerns the supply of wate:r3 gas and electricity from
the waterworks, gasworks and electricity sta.tlon to the thrf.e hOl..lSES.

1t is difficult, however, to think of any practlca} reason which mig th u
convince an audience of architects that the various pipes or cables s otllll
not cross, as the problem demands; and so we have preferre.d to give e
houses and wells version, where there is at least some weak justification

for the requirement that the graph be planar.

iliti it the vertices of the graph
In the utilities problem as we have drawn it
represent places or areas. The wells and the houses have been shrunk to
mere points, and the edges of the graph show the paths between. But as

Figure 10.9

we have said, a graph may be used to denote other kinds of relationship,
and we can draw graphs corresponding to maps and plans which show
properties other than the network of routes.

Let us take a more realistically architectural problem, in the design of
one floor plan of a small terrace house. On the ground floor of this
house there will be three rooms: a kitchen &, a dining-room dand a
living-room /. There will also be some circulation space ¢ —a hall or
corridor giving access to the rooms, and to the stairs. We shall specify a
set of requirements which the plan of the house is to fulfil. These
requirements are all stated in terms of adjacency, that one room be next
to another. The living-room is to be next to the dining-room, and the
dining-room next to the kitchen (but the plan will still be quite accept-
able if the kitchen is next to the living-room, for instance, although this
is not one of the stated requirements).

The circulation space ¢ we specify must be adjacent to k and /, but not

d - it will be permissible to give access to the dining-room via the living-
room, or via the kitchen, rather than direct. ¢ must also be adjacent to
the area outside the house on the street side. By ‘adjacent’ here we mean
that it must border on, or have some wall in common with the area in
question. The purpose of this requirement in real terms is of course to
allow for a front door into the house from the street. We shall label the
areas outside the house on the four sides (the street, the garden and the
two neighbouring houses) n, s, ¢ and w for the points of the compass, so
as to identify them as in Figure 10.9.

street n
w house e
garden s
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Figure 10.10

So far the implication behind the ‘adjacency requirements’ is that when
satisfied they allow for direct access (by means of a door) from one room
to another. Note that we are placing no restriction on the size or shape
of rooms; we simply demand that they share some length of wall or
boundary in common (although in practice, to provide space for a door,
this length of common wall would naturally have to be about a metre ot
more). We can imagine other adjacencies which would ensure the
satisfaction of other practical needs. Rooms may be required to be
adjacent to outside walls so as to allow for windows and natural venti-
lation. We shall specify that in our example the living-room / and the
kitchen k both face onto the garden front s, 0 as to catch the sun. (The
dining-room may either be internal, or else face n onto the street.) One
can imagine other reasons why one might wish to specify that two rooms
be adjacent. One can even imagine a contrary requirement, that two
rooms should not be next to each other — for reasons of noise, or
privacy, for example — but we shall not introduce any such requirements

into our present example.

We can summarize the requirements made so far in a simple graph
theory notation (Figure 10.10), where the different rooms or areas are
vertices, and the pairs required to be adjacent are joined by edges. Note
that the edge here, unlike in the graphs of the Konigsberg bridges, and
the houses and wells, signifies not necessarily a path or route, buta
relationship between areas in the plan. Two areas, € and w, do not
feature in any of the required adjency pairs.

] o———0d Oe 1 living-room
O—"—'—O s
“ - ow d dining-room

k kitchen
¢ circulation space

n,e,s,w areas around house

No comparative wei ght or value is attached to these requirements — they
must all be complied with. Of course these hardly represent a complete

picture of all the considerations to be taken into account when planning
such a house. And we do not mean to imply that the specifications we

Figure 10.11

S

have lai
e n; liléglcllown for our example have any universal value. In terms of
some rea oulse .des1g¥1, one could well argue over the pros and cons of
this or th .at_re atlonsl?lp in the plan. Our stated problem is not, however.
unt thzss :i( urll ctlhe ;:howe of some set of requirements that migh’t be made, ;
inds of requirements do cover some of ,
of the disposition of rooms i i o o 1o oo one
s in relation to each oth
whole which tend to be the d ini W
ole etermining factors in
who! : : areal layout.Inale
ificial example one can imagine that requirements might be placed isnS

some order of importance, and ”
2 s some plan rel i .
essential, others just desirable. p elationships be considered

! l}%aslge 11 isa planar graph showing all the requirements satisfied
nh adjaz: lilfl;f:t ;cot lf, e to s, s to w and w to n, since clearly these ;reas
: . e important distinction between th i
required room and space adj ons of o .
. ' ljacency, and the relations of j
(i.e., which room is accessi S
. ible from another directly, vi
€ Y : y, via a door
kind illustrated for the three Wright houses in Figures 1.13 and)l{){ttllale
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Figure 10.12

Figure 10.13

————— Figure 10.14
s
ining-room and,
Now let us place one room in the plan. We :‘21:22?2::;“% ; decide that
: : ise shape or 81Z€ ’
without choosing any precise s . means we must amend the
it should look onto the street side n. This m - —

graph to include the edge (4, n) (Figure 10.12).

now cross, and once again, however we redraw

Twasdgesiciits S the case. This graph too is non-planar.

the figure, this is always

But if we organize the vertices in one particular arrangement (Figure
10.14), then the features of the problem appear suddenly strangely
familiar.

With the exception of the intermediate vertices w and e lying between

s and n, the graph is similar to that of the houses and wells. Note that
there are only two edges incident with e (or w). We can define the
process of contraction of a graph, as that of replacing such a vertex and
its two adjoining edges with a single edge. Thus we may contract (7, e),
(e, s), for example, to a single edge (n, s). It is clear that the contracted
graph now ‘contains’ exactly the graph of the utilities problem.

If one graph H is contained within another G, that is to say if H com-
prises some of the vertices of G and comprises, for those vertices, all
their associated edges in G, then it is called a sub-graph of G. The
original graph of our house plan (Figure 10.12) when contracted thus
contains a sub-graph which is isomorphic to the utilities graph. It is for
this reason that it is not planar.

The implication for the plan of the house is that once having placed the
dining-room din the position against the north wall that we have
chosen, we will be unable to comply with all the stated requirements by
any subsequent arrangement of the other rooms whatever. If we go back
to the plan we can appreciate intuitively why this is so, although of
course any number of examples will not provide conclusive proof of the
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Figure 10.16

Figure 10.17

Figure 10.18

sition, and since W€ know that k must
1 front, then (#, d, k,s)

v TEi 3 £ po
atter. With din its presen
Il;loth adjoin d and look out onto s, the garde

in: the dining-room and kitchen form a ‘barrier

s e filled areas from each

across the plan, isolating the two remaining un
other (Figure 10.16).

g ] T n

. ST .
“barrier’ ts the circulation giving acces
i dining-room ‘barrier’ preven e

Thtehlstic:;r;{r;omg: the link (¢, I) cannot be made. T'tfntsogfo:;gl; 2

. operties of the left-handed and right—handed gel;:ie I e ms

¥s);nfmetrical by reflection as here — Xﬂ}l\alwag;: a:e i i e
ial preferences as to whic ro?. ool

lsl;:l‘;ev?;)ll?: :de:v, the ‘requirement graph’ is not affected by swapp

the two vertices over.)

Figure 10.19

be to move d and k to the side of the plan, and

er might seem to e ' oty
'trc? ;1:2:‘? and cgtogether in the remaining area, ¢ 11 the f
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access from living-room to dining-room.
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We can resort to more extreme measures. We put / next to d, and run a
passage (c) down the side of the house and along the garden front to

meet k. Now the living-room has no wall onto the garden. The require-
ment (/, s) cannot be met. And so on.

The fact is that d must not adjoin the north wall. Put it on the garden
side and we can find a plan which meets all the specifications. Figure
10.20 shows the requirement graph superimposed on a permissible
solution, with those extra edges added which correspond to the other
(non-specified) adjacencies which occur in this particular arrangement
((Z,m), (k, e), (I, w), (k, e) and (d, 5)). Let us call this augmented graph
the ‘adjacency graph’; it indicates those rooms which actually are
adjacent in a plan, as opposed to just those which are required to be.

The plan itself can be regarded as a graph, where the walls or boundaries
of rooms are the edges, and the corners where the walls meet are

vertices. The adjacency graph 4 is said to be the dual of this plan graph
P. We refer to each separate area bounded by the edges of a graph as a
Jace. (In the plan graph P each room is a face.) To each face f» of the
plan graph P there corresponds one vertex v, in 4, and the number of
edges at a vertex v, in A is the same as the number of boundary edges of
the corresponding face fp in P. (This is in effect how we defined the
original requirement graph, which is now ‘contained’ in 4.)
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Adjacency 4

Figure 10.20
Adjacency graph 4, and
plan graph P

Figure 10.21

Plan P

n
(44
" Figure 10.22
e
d
N
S
Pisin turn the dual of A. The two graphs have the same number of We place the dining-room first, as b
edges (taking into account the four infinite edgesin P separating n, &, W o side, adjacent to s. With the ad’da'ls' efore, but this time on the garden
and s). Each edge in 4 crosses one corresponding edge in P And the igure 10.23 longer planar. ition of the edge (d, s) the graph is no

number of vertices in one graph is the same as the number of faces in
the other. Every planar graph hasa dual which is also planar; and, as

a corollary, no non-planar graph hasa planar dual. It is on this theorem
that our assertion that there is no plan which corresponds to a non-
planar requirement graph depends.

For a final house plan illustration of this kind we will slightly revise the
terms of the problem, by assuming now that access to the house is from
the garden side § rather than from the street. We shall demand in
addition that the living-room be adjacent to the kitchen, and that the

n

circulation space ¢ shall give direct access to all rooms. The adjacency

requirements for the new problem are then these:

| o——704d co——Ok on
lo——————'“‘ok jo—90s ow
do__——————“ok ko.—————""os O e

And the requirement graph is as follows (Figure 10.22):

We can redraw the i
graph in a form which, i ili
we ‘ , if not famili is ti
do;ﬁlzl:;: :;al;es clear its structure. Ignoring for the Eéﬁ::t?]?
edges (s, w, 1, e, 5), the remainder of the graph may?)e

arranged i
ged in pentagonal form. s, d, k, / and ¢ are each joined by edges to

eve is i
ry other vertex. This is the complete graph on five vertices
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Figure 10.24

3 G. Kuratowski.
Mathematicae, Vol. 15—16,'1930, p. 27! !
The Theory of Graphs and its Applications,

ie’ damenta
auches en topologie ) Fun'
byt (;‘;sle‘;lr: ;igof of the theorem is given in C. Berge,
" London, Methuen, 1962, pp- 210-13.
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4 Eugéne-Emanuel Viollet-le-Duc. Discourses on Architecture, vol. 2, Lecture X VII
‘Domestic Architecture’, New York, Grove Press, 1959, in particular pp. 265-76.

is planar; and the complete graph on any number of vertices greater
than five cannot be planar, since we can see that it must contain K as

a sub-graph. This is sometimes known as the ‘problem of contiguous
regions’ or the ‘neighbouring states’ theorem, and in a story attributed
to Mobius takes the form of the dilemma of five sons whose father has
left his land to them in his will, on the condition that it be divided so that
every son is a neighbour to all the others. Of course the brothers find this
impossible, and come to the reluctant conclusion that the father did not
perhaps wish the estate divided at all.

The power which the ‘adjacency graph’ of a plan has, to reveal un-
suspected implications of a series of required plan relationships which
the architect may have, perhaps unconsciously, set for himself, and their
conflict with other formal considerations, can be illustrated with the
following example. This problem is one which dates originally from
Viollet-le-Duc’s Discourses,* where he engages in a long discussion of
the changes in house-planning wrought by the French Revolution and
the consequent democratization of society. Viollet-le-Duc points out
that the social distance of former times which maintained privacy
between master and servant had gone, and the need for physical barriers
had arisen to replace it. In the new society ‘the servant is a stranger
hired by the week’ and ‘the life of each family must have its privacy
secured’ through complex and elaborate architectural planning. There
must be service areas and served areas. There must be separate entrances
to the house for guests and the family. ‘We want an awning to shelter the
carriages, but those who come and go on foot - for in a democratic
society there will be such — must be able to come in the entrance hall
without passing under the horses’ noses.” There must be, in other words,
a degree of pedestrian and vehicular segregation. There must be ‘com-
munications specially reserved’ for service. All this, Viollet-le-Duc
believed, meant the rejection of that symmetry which reflected earlier,
less specialized, more simple domesticity. The new individualism in
society implied isolation and the distinction of parts in the dwelling.

In 1896, Frank Lloyd Wright, who knew Viollet-le-Duc’s writings very
well, was presented with this same problem. Chicago society was just
such a society as Viollet-le-Duc described, emphatic simultaneously
about individualism and democracy. In the Aline Devin House project
(Figure 10.25) Wright attempts to solve the Viollet-le-Duc problem
within the constraints of symmetry. The problem, Viollet-le-Duc has
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Figures 10.25 and 10.26

10.25 Frank Lloyd
Wright’s project (1896)
for a house for Aline
Devin; a, ground floor
plan; b, first floor plan.

Key:

a,s alleyways
library

c porte-cochére

d dining-room

ey, guestand family
entrances

€3 servants’ entrance

f billiard room

g garden

hy guest and family
hall

hy servants’ hall

k kitchen

I living-room

la landing

m main road

n cellar

o boiler room

P pantry

r servants’ room

s servery

sty,s  stores

t terrace

w washroom

10.26 Three-dimensional
projection, cut away in
section down the central
axis of symmetry to illus-
trate changes of level

and the complex three-
dimensional organiza-
tion of the circulation
system.
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told us and as we might well imagine, appears to be a tricky one.
Servants have to enter and circulate separately and yet be on hand at any
point where guests or members of the family are likely to be in need of
them. People coming by coach should arrive under cover, people coming
on foot should be kept separate enough not to be splashed by carriages
or sneezed on by horses. The living-room should communicate with the

garden. And so on.

Wright’s solution seems to be an ingenious and remarkable solution

to this seemingly difficult task. He takes the carriageway under the belly
of the house. To one side is the servants’ entrance and the service area,
to the other lies the entrance to the family and reception rooms. There is,
however, a grand entrance fronting directly onto the street for pedestrian
arrivals. The various parts of the circulation are handled with consider-
able three-dimensional skill in order that they be separated at some
points and brought together at others (Figure 10.26). The right thing to
do at this stage is to sit back and enjoy the solution, in the same way that
the architect clearly enj oyed arriving at it. We shall do the wrong thing
and ask does the structure of the problem require such a complicated
solution. Is, in fact, the problem as complex as Viollet-le-Duc said, and
as we intuitively imagine?

If the rooms and their adjacency on both of the two floors are repre-
sented by a single graph (Figure 10.27) it emerges that this ‘adjacency
graph’ is not planar. Now there is of course no reason why a series of
room relationships which are to be satisfied in a plan of more than one
storey should forma planar adjacency graph —since the ‘chains’ corre-
sponding to two series of connected rooms may Cross, if necessary, by
means of the one route passing over the other on a floor above. But are
the complex separations of level we see in Wright’s plan strictly needed
to meet the requirements which, by his solution, he seems to imply that
he has set ? Although the graph of the plan is not planar, the reason for
this is not quite what we might have expected. The problem has nothing
to do with separating servants from guests and family, nor with keeping
foot arrivals away from horses. The non-planarity arises because a
cycle of edges is formed by the adjacencies of the road m to the porte-
cochére ¢, of ¢ to the entrance €, € to the boiler-room 0, 0 to the alley-
way d,, and a; back to the main road m. Inside this cycle lies the terrace
t, and this clearly needs to give directly onto the garden g, outside the
cycle.

Figure 10.27

*Adjacency graph’ for
Frank Lloyd Wright’s
Devin House project,
illustrated in Figures 10.25
and 10.26. Adjacencies on
both floors are shown in

a single graph, with the
staircases denoted by zig-
zag lines. The graph is not
planar.

::c;te that for this purpose we have treated the two alleyways g, and a.
althiffrﬁt;{ a glvmg access to the cellar # and a, to the boiler-room oz'
gh they do in fact connect in the curving 1 ,
beyond the terrace. It can h intontion of il e
; ardly be the intention of th
that the coalman should i e L s
pass along this route, across the lak
panorama in full view of the terrace and : e
: garden, only to meet the wi
merchant coming around the i i Iy tho.
. path in the other direction. It is o
L1 ; nly thy
z;lizsitseerra;lii}elemetr}z pf the two pavilions which demands the doubi,in geof
ccess (just as it is symmetry which requi i
( quires the pedestri
i}ltsrg fro:;n the-mam road to enter centrally between the armI: of the .
Otheraipethcarrxageway; and thus necessitates the one route crossing the
n the centre of the plan at ¢). In any event the requirement that
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Figure 10.2?l enes
The same adjacen
graph of Figure 1_0.27 but
with the two vertices ay
and a,, corresponding to
the two alleyways, put
together to make the
single vertex a,s. The
graph is now planar.
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Il Electrical hetworks and mosaics of
rectangles

In all the examples of the previous chapter the graph has been used to
denote topological relationships between rooms — which room gives
access to another, which room is adjacent to another, We have men-
tioned, though, how graphs can be used to represent not only plans and
maps, but to depict all kinds of relations between groups of objects of
any sort whatever — that is in general relations within ses. There is a
close affinity between set theory and the theory of graphs.

The vertices of a graph are the elements of a set. This set might be the set
of rooms in a house, as above; it might be the set of bridges in the city of
Konigsberg, a set of people, a set of numbers. A graph G then consists

of this set X, and in addition a mapping g of the set X into itself. We
express this G = (X, g).

We have already met the idea of a mapping in previous chapters. The
mappings dealt with in graph theory are usually one-to-many, or multi-
valued. A multi-valued mapping g of X into X is a rule which associates
to each element x € X a sub-set g: x C X (Figure 11.1). In Figure 11.2

we illustrate this idea by arranging the elements of the set X (the vertices
of the graph) in a column on the left, and listing them again in a second
column on the right, and indicating the mapping by the arrows leading
from x on the left to the sub-set g: x which is associated to X, on the
right.

Take the example of a family tree, which is essentially a graph in which
the vertices correspond to a set of people, the family (Figure 11.3).
Associated to each element x of the set (each person) is the sub-set of
his or her children g: x. This sub-set might comprise one child, several
children, or possibly it might be an empty set g: x = @, where that
person is childless.

We know already that the elements of the set are represented in a graph
by points in the plane (vertices). To complete the graph we require that,
where x and y are two vertices such that y € g: x, they will be joined by a
line. We shall ask that, unlike in the graphs of the house examples, this
line carry an arrowhead pointing from x to y; this directed line is called
an arc and it is referred to by the pair [x, y].

the arc [x, y]:

xO——>—0v
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1 By F. Harary, R. 7. Norman and D. Cartwright, in Structural Models; an Introduction to
the Theory of Directed Graphs, New York, Wiley, 1965, which describes a wide range of
applications of graph theory in social science and elsewhere.

The arc therefore differs from the edge in our earlier examples, in that it
carries direction. We shall see what the precise relationship between the
arc and the edge is shortly. Graphs composed of arcs have been called
directed graphs, or more succinctly, digraphs.* The set of all arcs in the
graph we indicate by the letter U. So instead of expressing the graph as

(X, g) we can, alternatively, characterize it by the two sets (X, 0).

In the family tree each arc [x, y] expresses the relation x ‘is the father (or
mother) of” y. An example of a directed graph from the building world
is the management technique of ‘critical path analysis’, which consists
in drawing a graph of the set of separate jobs which go to makeup a
whole project or programme of building work. Each ar¢ in that case
represents the relation that job x ‘must be completed before a start can
be made on’ y. Another relation which a graph might express in a
similar way is, for a set of numbers, that the number x ‘is greater than’
the number y. The membership of all the sets g X is listed for the small
graph of this ‘greater than’ relation, in Figure 11.5.

For any arc [x, y] the vertex x is called its initial vertex and y its terminal
vertex. It is quite permissible for an arc to have identical initial and
terminal vertices, and so form a closed loop. This indicates that the
relation expressed is reflexive. An example of a reflexive relation would
be “lives in the same house as’; anyone lives in the same house as

himself.

An arc whose initial vertex is x and which is not aloop is said to be
incident out from x. Similarly an arc with terminal vertex x is incident
into x. Ina graph of a family tree we know that exactly two arcs must
be incident info each vertex, since every person must have just two
parents (Figure 11.7). There can however be any number of arcs
incident out from a vertex in this instance, up to, no doubt, some rather
indeterminate practical upper limit! Graphs of the family tree kind
provide a convenient and precise form for expressing the kinship
relationships which anthropologists find in primitive societies; the
various incest taboos, or the complicated rules governing who isa
permissible marriage partner for whom, then correspond to structural
constraints on the possible forms the graph may take.

An important type of relation is the symmetric relation whereby if x is
related to y, then necessarily y is related to x in the same way.

Figure 11.8

Figure 11.9

either

Figure 11.10

. .
n the graph this means that the presence of an arc [x, y] implies the

presence of the arc i i
o [y, x]. The graph (X, U) is thus said to be symmetric

[x,y]e U= [y, x] e U.

An i i
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the dining-room d, then dis adj
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PR S ; and this same consideration
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Figures 11.11 and 11.12

Figures 11.13 and 11.14

AL

More terms which will prove useful in describing various properties of
graphs, some of which have also been touched on already, deal with
sequences of edges or arcs forming continuous ‘routes’ through graphs.
In a directed graph the term path is used to denote a sequence of arcs
[, tp...u4z] Of a graph (X, U) such that the terminal vertex of each arcis
the initial vertex of the succeeding arc. If the path meets in turn the
vertices Xy, Xg... Up t0 Xp41 it is convenient to denote it by [x;, b, ]
The corresponding term for a sequence of k edges, in which each edge
has one vertex shared with the preceding edge and the other vertex with
the succeeding edge, is a chain, represented with the notation

(34, Xg..-X141) — @s in the house planning exercises.

path [xy, Xg, X3, X4] chain (3, X3, X3, Xy

X Uy X
X X,
Uy
Xa X3
Uy
X %1

A path in which the initial vertex x, is identical with the terminal vertex
X1 — the route returns to its starting point — is called a circuit. The
equivalent term for a chain of edges which returns to its starting vertex
is a cycle. The Jordan curve for the houses and wells problem was a

cycle, therefore.

circuit [xy, Xg, X3, X1] cycle (g, Xz, X3, X1)

X3 X3
A Xy A X
Xy X

gfaph (X; g)

-

Figure 11.15

Figure 11.16

partial graph (X, &)

a
Figure 11.17

Figure 11.18

\

Yet another notion which we introduced earlier was that of a sub-graph
which bears roughly the relation to a graph that a sub-set does to a set. ’
To be more precise, using the apparatus of formal notation which we
now have introduced, a sub-graph of the graph (X, g) is defined to be a
graph (4, g,) where A C X, and in which the mapping g, is given by

g4:x=g:xN A
Put into words, this means that a sub-graph (Figure 11.16) comprises
a sub-set of the vertices of the original graph (Figure 11.15) with, for

these vertices, all the arcs which connect them.

sub-graph (4, g,)

A partial graph of (X, g) on the other hand is defined by (X, 4) where &
is a new mapping such that 4#: x C g: x for all elements x. A partial
graph (Figure 11.17), therefore, comprises all the original vertices of the
graph but a sub-set only of the arcs.

It follows that a partial sub-graph of (X, g), defined by (4, h,) where

AcCcX al}d hy:xC (g:x N A), comprises a sub-set of the vertices of
(X, g), with a sub-set of the arcs linking those vertices in the original

graph (Figure 11.18).

partial sub-graph (4, /)

e

(@)
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Figure 11.19
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Figure 11.20
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2 Claude Berge. The Theory of Graphs and its Applications, London, Methuen, 1962, p. 6.

To adapt an illustration of these distinctions which Berge? gives; take
for example the graph (X, U) representing the complete road system of
London. X is the set of all road junctions, and (¥, y) € Uif aroad of any
kind joins directly the two junctions x and y. Then a map of the major
roads only (but showing all junctions) is a partial graph, while a com-
plete road plan of the West End is a sub-graph. A plan of the major
roads in the West End would be a partial sub-graph.

When we talk of plans or maps as graphs, though, it is well to remember
exactly what it is that each particular corresponding graph represents.
In the case of a road map some edge (x, y) in the graph would usually
denote the relation (as above) that junction x is joined by road to
junction y. The edge, however, is in no way a symbolic picture of the
road itself, as the line drawn in the map is; although it is often easy to
make this confusion unconsciously. The distinction can perhaps be
made clear in this way. We can quite legitimately, if somewhat per-
versely, draw another ‘graph of a map’ in which the relation expressed is
that junction x ‘is not joined directly by road to’ y. Figure 11.19 shows
the two graphs of a map, a graph of roads and a graph of ‘not roads’
(perhaps, a map and its ‘anti-map’). Other yet more exotic graphs of
maps would perhaps be possible, expressing different relations still.

With this point made, however, the fact remains that graph theory
provides us with an ideal model for systems of routes, whether they be
road maps, the patterns of circulation routes in buildings, or in general
any kind of network. The word network has this particular meaning in
the language of graph theory: it signifies a directed graph in which each
arcis assigned a numerical value. We assign to the arc u the value ¢ >0,
for example; this would represent some quantity concerned with that
relation which the arc signifies.

In this way the arcina network can represent either the maximum
capacity of, or else the actual volume of, flow along some link between
two points in the system. This might be the flow of motor traffic along
one-way streets (where ¢ gives number of vehicles per hour, say), the
flow of water along pipes (gallons per minute), the flow of commodities
between manufacturer and market (tonnage per month perhaps), or, ina
communication network, the flow of one-way messages like letters or
telegrams — all situations in which the direction and volume of flow or
traffic are measured together. We will save a fuller discussion of the

Figure 11.21

subject of traffic networks for Chapter 14, in the context of circulation
problems. Meanwhile, to go back to the house-planning exercises,

we find a surprising application of the theory of electrical networks
produces a graph with which we are able to represent not only the

afijacen.mes and relative positions of rooms in a plan, but also their exact
dimensions and shapes.

We illustrate the principle by taking a rather simple house plan as
before: three rooms, a living-room, a dining-room and a kitchen, with
a sme.l,ll entrance hallway and a staircase leading off it. The dimensions
are given as whole numbers, which, for the sake of the example, we can
assume are multiples of a basic module of 300 mm or 1 ft. The overall
size of the plan rectangle is 20 modules by 21.

Z
N\

N AN

£
—

8 dining-room

C N <

living-room

\L K %

NE- N
N 10 7SV N —>

13

In Figure 11.22 we present the plan as a mosaic of rectangles without
detal,l shqw_n; apd we mark those walls in the plan which lie ‘horizon-
tally’ (as it is orientated on the page), by showing them as heavier lines.

We denote the four marked walls by letters: n and s for the two outside
walls of the plan at the top and the bottom (on the ‘north’ and ‘south’
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Figure 11.22

sides of the house), and a and b for the two interior walls indicated.
We construct a graph in which each of the four vertices n, s, aand b
corresponds to one of these walls.

We show an arc entering 7 at the top, and associate a value with this arc
corresponding to the overall plan width, 20 modules. For each rectangle
which hangs below the horizontal line of the wall n (i.e., for each of the
rooms D and K) we insert an arc in the graph incident out from n. Each
of these arcs is incident into the vertex corresponding to that horizontal
line which the rectangle of the room sits on; that is, to the wall of the
room on its lower side. The arc corresponding to the dining-room D, for
example, is incident into the vertex a; and that corresponding to K is
incident into b.

Associated with the arcs are values, the widths across the plan of the
two rooms in question, 13 and 7 modules respectively. To complete the
graph in the same way we must show two arcs for the two room rect-
angles which hang below the line a, directed from a to s (for the living-
room L and the circulation space C), with values 10 and 3. And a single
arc [b, s] (corresponding to the stairs St), with value 7. Finally an arc
leaves s, with value 20, again for the total plan width.

With the special exception of the two infinite arcs value 20 (which could
be imagined as entering and leaving the network to and from some
external vertices at infinity), there is thus one arc for each room, with
an associated value for the dimension of the room in the ‘horizontal’
sense. And there is one vertex for every ‘horizontal’ wall.

13

St 7

Figure 11.23

We may further associate a value with each vertex (these values are
shown circled in Figure 11.23) corresponding to the ‘vertical’ distance
(?f the horizontal line it represents from the bottom wall of the plan, the
line s. The value of the vertex s is O therefore, since it corresponds to that
same wall. The value of bis 7, of @ 13 and of n 21 — the overall plan
dimension from top to bottom.

The resulting graph now shows the remarkable analogy with the physics
of electricity. Suppose it were an electrical circuit, with the arcs wires.
The values associated with each arc are the currents in the wires, and

the values of the vertices the differences in electrical potential (the
voltage). This network obeys Kirchhoff’s laws for electrical flow, where
the conductance of each wire (roughly, the ease with which electricity
passes) is the proportion of the corresponding rectangle, i.e., the ratio

of its horizontal dimension to its vertical dimension.

The first of Kirchhoff’s laws states that for a wire in a network with
conductance C, and voltages ¥ and V' (where V' > V’) atits two
vertices, then the current A4 in the wire flows from the larger voltage to
the smaller and

A=CWV —V").

Trapsferring this back into the terms of room shapes, we see that 4 is the
h9rlzontal dimension of a room, while (V7 — V) is always the vertical.
Since C, as the proportion of the room, is defined as the ratio of the one

to the other, the identity 4 = C (V' — V") follows.
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Figure 11.24
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For example we take the kitchen K (Figure 11.24). The ‘current’ A4 in the
kitchen ‘wire’ is its horizontal dimension 7. The ‘voltage’ at the two ends
of the ‘wire’ ¥ and V"’ are 21 and 7, their difference 14, which is the
vertical dimension of the room. The ‘conductance’ of the ‘wire’, the
proportion of the room, is the ratio of the one dimension to the other,
7/14 = 1. Putting these values in the equation we have

7=1@21-"7).

The second law concerns currents only, and states that the total current
entering the vertex equals the total current leaving that vertex. A look at
the graph shows us that in the analogy with plan dimensions this always
holds true; the equivalent situation in the plan being the breaking down
of some larger horizontal dimension into a number of smaller, or the
adding together of smaller to give larger. A ‘current’ of 13 enters the
vertex a, for instance, and ‘currents’ of 10 and 3 leave it. The direction
of the arcs in the graph is the conventional direction of the flow of
electricity; and the ‘current’ of 20 entering the network at the top (the
overall width of the plan) must equal the current leaving at the bottom
(that same width again).

Tt was by making use of this electrical analogy, in the network corre-
sponding to a mosaic of rectangles, that the self-styled ‘Important
Members’ of the Cambridge Trinity College Mathematical Society
succeeded in 1937 in producing a solution for the old puzzle of ‘squaring
the square’, long thought impossible. That problem consists in finding
some set of squares, no two the same size, which will fit together without
interstices to form a complete, larger square.

William Tutte, one of the four ‘Important Members’, recounts the way
in which ‘the key discovery of the whole research’ was made by the
mother of another Member, R. L. Brooks. The four friends had been,

by a process of experiment, producing and cataloguing large numbers of
‘squared rectangles’, otherwise called ‘perfect’ rectangles, in the hope of

Figure 11.25

Figures 11.26 and 11.27
‘Perfect’ rectangles:
Figure 11.26, R. L.
Brooks’s jigsaw, and,
Figure 11.27, as re-
assembled by Brooks’s

mother.

112

finally finding one which was a ‘perfect’ square. Alternatively they hoped
they might find two perfect rectangles with the same overall dimensions
but with no component squares in common ; they would then be able to
put the two rectangles together with two larger squares to form a perfect
square, by the construction of Figure 11.25.

Brooks had found a rectangle with unusually small component squares
(Figure 11.26) which pleased him so much that he made a jigsaw of it.
Brooks’s mother took the puzzle and tried to assemble the pieces. She
succeeded eventually in putting them together again; but when Brooks
examined her solution he found that although the rectangle had the
same original overall dimensions it was not the squared rectangle he had
cut up! (Figure 11.27). Here were two perfect rectangles of the same
shape — but which failed ‘in the worst possible way’ to have no two
component squares in common. Nevertheless the discovery suggested
that two such rectangles might still be found. ‘The Important Members
met in emergency session.’
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Figure 11.28

An examination of the electrical networks corresponding to the two
rectangles led to the discovery of certain rotational symmetry properties
of the networks, using which the Important Members could generate
large numbers of pairs of rectangles of similar shape and size. They
decided to experiment with a possible means of producing pairs of same-
size rectangles with only one corner-component square in common,
which they could then put together in the construction of Figure 11.28,
again with two more large squares. ‘So it came to pass that Smith and
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Stone sat down to compute a complicated...pair while Brooks, un-
known to them, worked on another in a different part of the College.
After some hours Smith and Stone burst into Brooks’s room crying “We
have a perfect square!” To which Brooks replied “So have I’

The whole saga of the search for the perfect square is told by Tutte in
Chapter 17 of Martin Gardner’s delightful book More Mathematical
Puzzles and Diversions.® The Important Members (R. L. Brooks,

C. A. B. Smith, A. H. Stone and W. T. Tutte) published their paper on
the subject of “The Dissection of Rectangles into Squares’ in the Duke
Mathematical Journal, vol. 7, 1940, pages 312-40. Since then there has
been continued interest in the subject of tiling by squares, and more
recently computer methods have been used to obtain new results.

In our own architectural problems, the ‘electrical network’ offers the
possibility for the planning of houses or other small buildings — or even
of small groups of rooms within a larger building — of an economical
representation of, at the same time, the relative positions, dimensions
and shapes of rooms and plan. With a little further calculation it will

be possible also to infer from the same graph whether one room is
adjacent to the next or not, as we will show shortly. It has been suggested,
in fact, by Steadman* that by the manipulation of such networks using
computer methods it would be possible - given requirements for
minimum sizes for rooms and constraints on the permissible shapes they
might take, as well as ‘adjacency requirements’ — to produce quite
systematically all possible plans in which those requirements were
satisfied. In very broad terms the method would consist in constructing
different networks in a permutational fashion, and ensuring in every
case that Kirchhoff’s laws for networks were obeyed ; and hence that the
network always bore a direct correspondence to some mosaic of rect-
angles — that is, to the desired plan arrangement.

To go back to the example, it is clear that the orientation of the plan in
Figure 11.23 is quite arbitrary, and we can draw a second network
(Figure 11.29) where the vertices are the ‘yertical’ walls — as it happens,
again four of them.

The two side walls on the ‘east’ and ‘west’ sides are given vertices e and
w, and the two internal vertical walls labelled ¢ and d. This second graph
gives no new information on dimensions which is not contained in

13

St

N 10

Figure 11.29

Figure 11.30

effect in the first; in fact the whole plan may be reconstructed, given just
one or other of the graphs. In this case (but not, curiously, in every case)
the graphs are duals. They contain the same number of arcs, since in both
the arcs represent the rooms. And for every face in one graph thereis a

vertex in the other, and vice versa. Figure 11.30 shows the two graphs
superimposed to illustrate this.
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Figure 11.31
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To look at the question of ‘adjacencies’ of rooms as determined from the
‘electrical’ network, let us go back to the graph of the ‘yertical’ walls
(Figure 11.29), comprising the vertices w, d, ¢ and e. It is clear from an
inspection of the vertex w, for example, that the rooms represented by the
arcs [w, d] and [w, c] are both adjacent to the outer wall of the plan on
the ‘west’ side, w. Similarly, the fact that at the vertex d one arc [w, d]
enters and one arc [d, c] leaves, means that these two rooms are also
adjacent. They have a common ‘yertical’ wall between them.

The situation at vertex ¢ is by no means clear from the structure of th.e
graph itself, however. In order to see which of the rooms corresponding
to [w, c] and [d, c] (the dining-room and the circulation sPace) are
adjacent to those represented by the two arcs [c, e] (the kltghen anc.i the
stairs), we must take account of the numerical values associated with
these arcs (Figure 11.31).

8
D 8
14 4 K
w e 4
13 6
c 13 >K T
7 7 St

The order in which the arcs are arranged around the vertex ¢ isimpor-
tant. Taking the uppermost arc incident into ¢ fI‘OII.l the left (corre-
sponding to D, value 8), and the uppermost arc incident out from ¢ on
the right (corresponding to K, value 14), we subtract the smal}er from the
larger. We determine from this that D is adjacent to K along its whole
wall, and that there is a remaining 6 units of ‘width’ along the wall of

K so far unaccounted for. Take this remainder of 6, and take the next
lowest arc incident into ¢ on the left ([d, c], corresponding to C, value

e

Figure 11.32

|
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Figure 11.33

13); again subtract the smaller from the greater. K is adjacent to C over
a length of wall of 6 units, and there is now a remaining 7 units of the
wall of Cleft over. We take this remainder, together with the next lowest
arc incident out from ¢ on the right (St, value 7), and the two match up.

We conclude that there are three adjacencies constituted by the arrange-
ment, D with K, C with K and C with S? (shown by dotted lines in
Figure 11.32).

By a process of successive subtraction of the values associated with the
arcs entering and leaving the vertex, in an appropriate alternating order,
we can determine the adjacencies of rooms from the electrical graph in
any comparable situation. What is more, with a rather peculiar arith-
metic, in which any remainder in the subtraction (i.e., the overlapping of
two rooms) of less than, say, 3 units were disregarded, we could make sure
that only adjacencies with sufficient overlap to provide space for a door,
for example, were counted. In Figure 11.33 the overlap of two modules
shown would be discounted, while the width of three modules would be
acceptable, assuming our module size of 300 mm, giving a door opening
900 mm across.

In the diagram made up of the two superimposed ‘electrical’ networks
for both vertical and horizontal walls in the plan (Figure 11.30), we know
that in each network there is one (finite) arc and one arc only corre-
sponding to each room. Because the two graphs are duals, and in the
nature of the way they interrelate, the edge corresponding to a room in
one network crosses the arc corresponding to that same room in the
other network. For instance, the arc [n, a] in the ‘horizontal’ network
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Figure 11.34
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crosses [w, c] in the ‘vertical’ network, and both these arcs corresp.ond
to the dining-room D. The ‘currents’ in the two ‘wires’ are the hori-
zontal and vertical dimensions of D respectively.

For the sake of a diagrammatic picture — and we depart here from any
strict graph theoretical form of representation—let us circle the five points
at which these pairs of arcs cross, and label them with letters for the
rooms to which the pairs relate (Figure 11.34). We can now incorporate
in this composite diagram the adjacencies of the rooms (shown by
broken lines) determined in the way we have just demonstrated.

We introduce four more circles on the infinite arcs incident withn, s, w
and e, to represent the four areas around the plan on the four sides,

N, S, W and E, as we have done in earlier examples; and include the
adjacencies of rooms to these external areas. We have now in eﬁ'ect.
produced a new graph with the circles as vertices, and the broken llr}es
as edges, which is a complete ‘adjacency graph’ of the plan, of the kind
we have seen before (Figure 11.35).

Figure 11.35
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We have suggested already in Chapter 6, how in a real planning problem
the architect is likely to be given not exact specifications for the dimen-
sions and shapes of rooms required, but instead some rather loosely
defined ranges which these sizes might take. His client might ask, for
example, that the living-room in a house be no smaller than a certain
area, and that its shape be no more elongated than a given proportion;
but any increase which the architect can manage to effect on this
minimum specification will be welcome. The exact final sizes will
depend clearly on what can be afforded, and on the problems of fitting
together the dimensions of the different rooms into the mosaic of the

plan.

So far we have shown how to draw ‘electrical networks’ for layouts
whose dimensions and adjacency relationships are already precisely
worked out. In practice the architect’s problem would tend, of course,
to be the other way about: how, for given requirements of room size,
room shape and room adjacency, can he produce a plan in which those
requirements are met ? If somehow the requirements could be formu-
lated in such a way as to build up a pair of matching electrical graphs
(as in Figure 11.30) in which Kirchhoff’s laws were obeyed, then the
problem would be solved. The corresponding plan could then just be
drawn out from the diagram. But how can the imprecision of shape and
size requirements, as they are likely to be set, be expressed with mathe-

matical exactness ?

Suppose it is required that a dining-room D of rectangular shape is to
be not less than 8 modules in either length or breadth. We know that in
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a diagram of the type shown in Figure 11.34, where the two electrical
graphs for a plan were superimposed, then each room is represented by
two arcs which cross, whose attached values are equal to the two
perpendicular dimensions of that room. The four corresponding vertices
represent four walls in the plan, parts of each of which form the four

By analogy, that part of a similar diagram which is to correspond to the
dining-room for our example, must eventually take the form also of two
arcs which cross (Figure 11.36). At this stage the attached value on each
arc may be given by the inequality > 8. In this way we have a represen-
tation of the specification for the room, expression the minimum
dimensional requirements. Eventually the four ‘wall vertices’ will be
made to coincide with other vertices, corresponding either to walls of
other rooms, to which the dining-room may be adjacent, or else to the
outside walls of the plan as a whole.

Suppose that for the sake of the example we fix the outside shape and
overall dimensions of the house plan, of which this dining-room is to
form part. This plan shape is an empty rectangular ‘shell’, 20 modules

o
D >8
N
¢ o>
N walls of the room in question.
o
Figure 11.36
Figure 11.37
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Figure 11.38
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by 21, which is to be filled up with rooms (Figure 11.37). Again we know
that, given this shell, whatever the exact form of the final network
diagram for the layout, it will comprise at least the four vertices for the
four outside plan walls n, e, s, and w. What is more, the values attached
to those vertices are also fixed, as are the values attached to the infinite
arcs which are incident with the vertices.

Suppose we ask that the dining-room D and also a kitchen K with
minimum dimension 6 modules (and no other rooms) are to lie adjacent
to the shell wall n. We put the ‘specifications’ for the rooms and the
‘specification’ of the plan shell together (Figure 11.38). There are two
distinct permutations of position which D and K may take (without
regard to their exact dimensions): where D is adjacent to the plan wall
w, and K to e, or else the symmetrical reflection of that position, K
adjacent to w and D to e. From these two possibilities we choose to
examine the first.

| Yo

© i

281



Figure 11.39
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We may now infer a number of properties of the upper part of the
network diagram. Both K and D are to be adjacent to n. This means that
the ‘north’ walls of the two rooms become identical with the shell wall

at n; and the three corresponding vertices in the diagram may be
collapsed into a single vertex (Figure 11.39). Since K and D are the only
rooms adjacent to n, and there must clearly be no ‘dead space’ left
unfilled between them, then the vertex which represents the ‘eastern’
wall of D must be identical with the vertex which represents the ‘western’
wall of K. The two rooms lie adjacent along this common stretch of
wall. Equally, the west wall of D will coincide with the west wall of the
plan shell at W, and the east wall of K with the east wall of the shell at e.
We put those corresponding vertices together too.

We apply Kirchhoff’s second law to the vertex n. The total ‘current’
entering a vertex is equal to the total ‘current’ leaving that vertex. Here
a ‘current’ of 20 enters, and ‘currents’ of > 8 and > 6 leave (Figure
11.40). From this we deduce that the current which takes a minimum
value of 8, may take a maximum value of 14, i.e., (> 8, < 14); and that
the current which takes a minimum value of 6 may take a maximum
value of 12, i.e., (> 6, < 12).

Figure 11.40

Figure 11.41

20

>8,<14 >6, <12

What these inequalities on the arcs mean, in terms of the plan, is that
the breadth of the room D may permissibly vary between 8 and 14
modules and the breadth of the room K between 6 and 12 modules
(Figure 11.41). It follows that the position of the common wall shared
by K and D at the centre may permissibly vary in position between a
distance of 12 modules and a distance of 6 modules from the shell at e.
We attach this range of values (< 12, > 6) to the vertex v which corre-
sponds to that shared wall, in the same way that we attached fixed
values to the vertices in the previous network diagrams.
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Figure 11.42
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Now consider the vertex v. There is one arc [w, v] incident into v, whose
attached value is > 8; thereis an arc [v, €] incident out from v, with
value > 6. There are three possibilities here (Figure 11.42). Either the
two arcs ultimately will take the same value (meaning the two rooms

K and D are of equal depth — that is, they stack in the north-south
sense), and Kirchhoff’s law will be obeyed for the vertex. Or else the
value of [w, v] will exceed that of [v, e], or vice versa (meaning that D
overlaps K by some dimension, or K overlaps D). In these latter cases
at least one new arc will be needed, either incident out from v, or
incident into v, respectively.

These new arcs ‘grown from v’ will correspond to the dimensions of
other rooms, adjacent to both D and K, which are to be fitted in the
plan at a later stage in the exercise.

So the process would go on, working around the plan, inferring the
ranges of values on arcs and vertices, collapsing groups of vertices
together, and growing new arcs as the calculations at each vertex
demanded. This sketch of a procedure will perhaps serve to indicate
something of how a computer representation of the electrical network
diagram would be grown and manipulated. Such a method would take
each possible permutation of positions of rooms in turn. It would test
for the planarity of each graph of ‘adjacency requirements’ and reject
straight off all those permutations which were inadmissible, without
going further into their detailed planning. It would take account not
only of dimensional constraints, but constraints on the proportion and
area of rooms (through making use of Kirchhoff’s first law) ; simul-
taneously ‘growing’ an adjacency graph by means of the kind of calcu-
lation we outlined earlier. This, in outline, is how the suggested method,
for producing systematically all plans which satisfy a given set of
requirements, would work.

12 Locations and associations

In the treatment of house planning problems in the last two chapters we
discussed the question of the ‘adjacency’ of rooms; the principal, but by
no means the only reason why we require rooms to be adjacentina plan
being to allow people direct access from one to the other — or possibly,
in a factory or a warehouse for example, because some materials or
goods are passed from one room or area to the next. Other reasons for
making two rooms or areas adjacent are, as we mentioned: that if one
of these areas is outside the building proper, then the ‘adjacency’ may
allow for natural lighting or ventilation, or for a view of the outside
from the room in question. And there are reasons why two rooms or
areas might need to be kept separate — the opposite of an ‘adjacency
requirement’ — for reasons of sound insulation, say, or privacy.

While the treatment of problems of plan arrangement at a small scale,
as in the house, may perhaps quite realistically be put in terms of
‘adjacency requirements’, it becomes clear that this kind of constraint is
quite inadequate for the production of workable arrangements for any
larger type of plan. In a house there is no room which is any great
distance from any other. But in an office block of, say, 20 storeys, and
perhaps 100 m in length, the distances which the occupants may have to
travel to reach one room from another, will become quite significant.
We can imagine that for groups of rooms in this building — perhaps
corresponding to different departments or sections of the firm occupying
the building — it will not be so important that any one room is adjacent
to another (and indeed there are limits on the numbers of rooms which
may all be mutually adjacent); but it will be important for the rooms

in each department to be near to each other, that they be grouped to-
gether — a requirement for their proximity.

The implication behind this ‘proximity requirement’ is that the occu-
pants of the building carry out their work in some kind of regular
repetitive routine; so that they more frequently make journeys between
some pairs of rooms than between others. These journeys represent
wasted effort and time, and so the more the architect can organize the
layout of the building so as to minimize the length of these journeys
from room to room, the better.

Architects, when they are planning layouts, often tend to speak of
some kind of ‘association’ between the rooms or spaces which they are

manipulating in different arrangements — and this ‘association’ can
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sometimes be rather nebulous and ill-defined — something to do with
rooms of a like kind or classified under the same heading being grouped
together. But if we are to give these problems any precision we must be
more specific about the real practical reasons why two rooms should be
near together — and we must separate notions about how rooms are
‘associated’ in some general scheme of classification from those func-
tional and operational aspects which are important for their relative
positioning in a layout. For the purposes of planning for pedestrian
circulation, we will want to know who makes what journeys, of what
length, and how frequently, from which rooms to which other rooms;
and what ‘cost’ in wasted time, effort or money can be attributed to
each of these journeys.

We can use a formal matrix-like notation to produce a perfectly general
statement of the layout problem, where circulation is to be minimized.
We introduce special meanings, for this purpose, of the terms activity
and location. By “location’ we mean here some identifiable area within
the building, either a work-place, a room, a ‘zone’ of some kind, which
we may reasonably distinguish as being the origin and destination of
pedestrian journeys. It may be possible to determine locations simply

by dividing the floor space up into equal units with an imposed regular
grid. What is important is that all locations should be roughly equivalent
in size and significance.

Whether we take smaller or larger units of area for these ‘locations’ will
depend on how reliable and detailed our information is on the frequency
with which journeys are made, on how distances between locations are
measured, and on the practical limits which the processes of computa-
tion involved in a solution of the problem themselves impose. We shall
come back to these problems later; but let us suppose for the moment
that we can define locations and represent each one by a point (perhaps
its centroid), to and from which the distances separating locations are
measured.

An ‘activity’ is more difficult to define in this context, but roughly it
represents ‘what goes on in a location’. In their paper on the circulation
problem, Whitehead and Eldars! define ‘activity’ as ‘any process which
is or may be carried out at a point separate from other processes’; but
this definition is a bit loose. What is important is that ‘activities’ are not
uniquely tied to specific ‘locations’. The ‘location’ represents in principle
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Table P

an empty piece of floor area or building space. Then, subsequently,
that area or space is designated for a particular function, or ‘activity’,
and the location may be delimited by partitions, possibly, or provided
with appropriate furniture or equipment for the activity in question.

We will start with a simple example, and develop these definitions in
more detail later. The floor plan of a research institute (Figure 12.1),
let us imagine, is a rectangle 16 m by 14 m, and is divided by a 2-m
wide corridor running centrally down the long axis of the building.

Our layout problem is to accommodate eight research workers in eight
equal area offices, each of 24 m2. In terms of architectural design, there
is only one possible configuration of rooms, assuming that all the offices
are to give on to the corridor, and all to be of the same shape, of similar
character, and similarly equipped. So the layout problem is really an
administrative one, of assigning a room to each worker.

In this case the ‘locations’ are the rooms, and the ‘activities’ correspond
to the individual workers. We name the rooms in the plan (Figure 12.2)
by the lower-case letters a, b, ¢, d, e, f, g, h. And the researchers —

Mrs A, Mr B, Miss C, Mr D, Dr E, Miss F, Mr G and Mr H — we will
refer to by the capital initial letters of their surnames.

We can describe any particular permutation from the set of all possible
allocations of rooms to workers with a Table P, which in the general
problem represents a placing of each activity in a chosen location. Here
it amounts, in effect, to a list of ‘who occupies which office’. Let us
choose for our first example to examine the layout where worker 4 is
assigned room a, worker B room b, etc. The Table P in this case is:

Locations (offices) @ & ¢ d e f g h
Activities(workers) 4 B C D E F G H

Next, to describe the plan itself, we make a Table D, which records the
distances between each pair of locations. There are a number of general
problems arising from the measurement of distance for this purpose,

but in the present example we shall take it that the measurement is

taken from the centre of each room in question; that the door to each
room is centrally placed in the corridor wall; that distances are measured
to the centre-line of the corridor; and that all dimensions are taken
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Figure 12.3
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perpendicularly to the walls of the plan. Figure 12.3 shows how the
assumed circulation system of the plan (shown by broken lines in the
figure) thus takes the form of a rectilinear ‘tree’, with every edgeinthe
tree of equal length 4 m. (This is clearly a very schematic and artificial
representation: the inaccuracies involved in making these kinds of
assumptions in measuring distance will be less for more extensive plans,
however.)

D is a triangular table with as many columns (and rows) as locations.
The entry d;; records the distance between the ith location and the jth
location. The table for our example, with the distances measured (in
metres) along the circulation ‘tree’, is:

a b ¢ d e f g h

12 - ¢
16 12 -
20 16 12
8 12 16 20 -

12 8 12 16 12
16 12 8 12 16 12
20 16 12 8 20 16 12

0 S /0 o8

It will be clear that there can be no entries on the leading diagonal (top
left to bottom right, where dots are shown), since these positions in
effect record ‘the distance of a location from itself”. It is also clear that
only the one triangular half of the complete square table is needed, since
the distance from i to j is the same as the distance from j to i, and the
other triangular half would only repeat the identical information in
symmetrical form. (Though this would not necessarily be true of the

‘distance table’ of, say, a one-way road system, where d;; does not always
equal dj;, and the complete square table is required.)

This Table D, together with the Table P, serve to describe a particular
layout solution. In order to evaluate the layout, to see how well it caters
for the patterns of movement between one ‘activity’ — or worker in an
office in this case — and another, we will need a further Table A, which
expresses the ‘association’ between each pair of activities located at i and
J. We have warned against loose thinking when it comes to this question
of ‘association’. (Sometimes the words ‘affinity’ or ‘linkage’ have been
used.) Here the term is defined to mean ‘the cost of separating each pair
of activities, per unit distance’. But how can we measure such a ‘cost’?

Here is one of the main difficulties in the circulation problem: how to
determine in a particular case some set of empirically derived values for
the ‘association’ between activities. If two research workers, in our
example, are found to visit each other frequently in the course of their
work, then it will be reasonable to set a high value on the association
between them. If possible, we should mount a survey, to find out the
frequency with which Mrs A4 visits Mr B, or Miss C, and so on, over a
day or a week. (The assumption will be that the frequency of trips
between each pair of workers remains the same, or very nearly the same,
from one day to the next, or from one week to the next, or whatever
time cycle is chosen ; and this is an assumption which should be tested,
for if the pattern of traffic is not regular and consistently repeated then
none of the following analysis can properly be applied.)

A better layout, or layout of lower “cost’, will be one where the pairs of
research workers who most frequently visit each other are closer
together in the plan. But we cannot always simply set values in the
‘association’ Table A equal to the frequency (over some fixed period) of
two-way traffic between pairs of ‘activities’. For if the overall purpose
is to cut down wasted time spent moving about the building, then we
must accept that in many situations the value of some of the occupants’
time will be greater than that of others.

In our research office, we might assume that all the researchers could be
treated equally; but in a commercial firm for example, the chairman’s
time might be considered many times more valuable than that of his
secretary — and though the secretary might make very many journeys in
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2 U. Cinar. Facilities Planning; a Systems Analysis and Simulation Approach with Particular
Reference to Hospital Design, unpublished PhD thesis, Department of Operational
Research, University of Lancaster, 1968.

the course of her day, there should be much less significance attached to
these trips than to the few visits made by her employer. It has been
suggested that to cope with situations of this sort, the ‘association’
values should consist of the basic trip frequencies ‘weighted’ according
to the salary of the person making each trip. The cost of a layout would
then represent the total cost to the firm in wages (and possibly overheads
too) of time lost in travel. Crudely, if the chairman earned £10,000 a
year and his secretary £1,000, then one trip made by the chairman would
count for ten trips by the secretary.

This kind of measure may be appropriate in business. But in an organi-
zation such as a hospital, although a doctor’s or a surgeon’s time will
cost more in wages than that of a nurse or a porter, perhaps it will be
most important of all to reduce the length of journeys made by the
patient, who receives no salary at all. For him, the importance of time
saved might be literally vital.

It may be possible to deal with this difficulty by setting a subjective scale
of values on the relative importance of different trips, and taking the
advice of management or administrators in fixing this scale. Cinar,?

for example, in a problem of hospital layout, establishes series of
‘weighting factors’, by which the trips made by members of each grade
or group in the hospital population are multiplied to produce the
appropriate association values. These factors are: for medical staff 12,
for nurses 3 — the ratio depending on their relative salaries —and for
patients 3, their visitors 1. These last two figures are inevitably some-

what arbitrary.

In the ideal democracy of our research institute, however, we shall take
it that everybody’s time is valued the same. For one thing, it will

simplify the arithmetic. Presented below is some tabulated data, perhaps
derived from a survey, of the number of visits each worker makes per
day to every other. There are no diagonal entries again of course, but
the table is not symmetrical, since the number of visits worker I makes
to worker J may well differ from the number J makes to I. The column
and row totals show the total number of trips made to and by each
individual respectively. Miss C, for example, works quite independently,
makes no visits, and is not visited. Dr E by contrast has a good many
contacts during the day, making 12 trips to see others and being visited

12 times himself.

Table C

Figure 12.4

Graph showing numbers
of journeys made daily
by workers one to an-
other, for the research
institute example.

tod B C DEF G H Rowtotals

Visitsdailyby 4 - 0 0 0 5 2 0 1 8

B 0 - 041050 10

cC 00 - 0O0OODO 0

D 230 -1010 7

E 4101 - 213 12

F 1 0002 - 01 4

G 0100O0O0OT-0 1

H 0000320 - 5
Column totals 750 512 6 7 5

Wfa might present the same information in graph form, as a network

(Fi gure 12.4), where the vertices represent activities (research workers)
the directions of the arcs indicate who visits whom, and the attached ’
values on the arcs give the daily trip frequencies. C becomes an isolated
vertex, and four pairs of vertices are joined only by single arcs: [ D, A]
[4, H], [D, G] and [E, G]. Nine other pairs of vertices are joined ee;ch {)y

Fwo oppositely directed arcs, representing the two-way traffic in each
instance.

co

It i§ at .this point in other problems, possibly, that different cost
weightings would be introduced, to account for differences in the value
of workgrs’ time. The number of trips would be multiplied by the
appfoprlate ‘weighting factor’ in each case, according to the salary or
the importance of the person making those trips. In our example
though, we have decided to attribute exactly the same cost signiﬁ,cance
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Table A

to all journeys. We therefore add together the trips made in both
directions for every pair of activities (workers); and it is simply this sum
of two-way traffic which, for the purposes of our example, will be the
value given to the ‘association’ of each activity pair. Note that every
single trip recorded is a return journey. For example, as Figure 12.4
shows, B visits E once, and E visits B onceina day. The association of
E with Bis therefore given the value 2. This means that E goes to Band
returns, and B goes to E and returns; i.e., the distance which separates B
from E will be covered four times in all.

It follows that the “association’ Table A, shown below, will be triangular,
like the ‘distance’ Table D. Its corresponding graph is the symmetric
network of Figure 12.5, with pairs of vertices shown connected by

edges rather than by arcs or pairs of arcs.
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We might call this graph the ‘association graph’. It shows up, more
clearly than does the table, something of the structure of the pattern of
pedestrian traffic in the institute. We have two somewhat separate
groups of workers, one B, G, and D, the other 4, E, F and H, within
each of which communication is frequent ; perhaps the groups might
be working on two different projects. The groups have some contact,
mainly via Band D, and 4 and E. Inside the groups, Bis in a central
position in the smaller team, and it is principally through him that D
and G are linked. In the larger 4, E, F, H groupitis E who is the
main focus of communications.

These structural aspects become even more obvious if we omit progres-
sively from the graph those edges which are of lowest value. With edges
value 1 ignored, and then with value 2 omitted, the network appears as in
Figures 12.6 and 12.7. By the second stage the two groups of researchers

Figure 12.5

Symmetric ‘association
graph’ for the research
institute, showing total
numbers of journeys
made daily in either
direction between pairs
of workers.

cO

are split completely apart. Removing edges value 3, as in Figure 12.8,
reduces thfa graph to a simple pair of ‘trees’ (plus the vertex C) — strictly,
a ‘forest’, in the botanical metaphor of graph theory language.

For some short definitions of these terms in graph theory: a treeis ‘a
connected graph with no cycles’. A connected graph is a graph in which
each vertex is joined to all others by chains — that is, by consecutive series
of linked edges. In Figure 12.8 the edges (H, F), (F, E), (E, A) form the
chain (H, F, E, A). A connected graph is thus one which consists of one
part or component only and is not split into a number of distinct,
‘disconnected’ components. All our house planning graphs in the last
chapter were connected, but the two graphs of Figures 12.6 and 12.7
above, are not. The graph in Figure 12.6 has the single isolated vertex at
C; and the graph of Figure 12.7 consists of three separate components.
A cycle we defined in the last chapter as a chain that returns to its
starting point. Both the graph in Figures 12.6 and 12.7 contain cycles;
one example in the latter is (H, F, E, H). But the last graph of the series,
in Figure 12.8, does not (nor is it connected). The separate components
of this final graph are thus trees; and a graph which is not connected,
but consists of a number of trees, is called, naturally enough, a forest.
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Figures 12.6, 12.7 and 12.8
¢Association graph’ of
Figure 12.5 with edges of
lowest value progressively
omitted.

12.6 Edges value 1 omitted

12.8 Edges value 3 omitted
G

A0

204

12.7 Edges value 2 omitted
G

coO

cO

Table P

Figure 12.9

In this ‘forest’ graph of Figure 12.8 the importance of the positions of
Band Ein the two research groups emerges quite clearly. If we were to
go about planning a layout intuitively, on the evidence of an inspection
of this graph, it would seem sensible to divide the accommodation first
into two parts, a group of three rooms together for one group of workers
and a group of four rooms for the other. The eighth office goesto Miss C,
and since she is quite independent, it does not much affect the issue
which room she is given; and it will be best to place her at one of the

two extreme ends of the plan.

Within the groups, a reasonable strategy would seem to be to position

E and B first, and then place the other researchers around them, perhaps
working in order of the relative strengths of their association with these
first two. Thus in the large group we might position, after E, 4, then H,
then F; and in the smaller, after B, D, then G. Finally, we could take
account of the weaker connections across the group division perhaps —
the links between 4, E, D and B. A plan solution worked out following
this line of reasoning, and not produced by any systematic method, is
shown in Figure 12.9. It can be recorded in a ‘plan’ Table P, as in our
earlier convention, thus:

a b c de f g h
C BEFGDAH

But before we embark on a discussion of the different methods for
producing ‘better’ solutions to a circulation problem, let us return for a
moment to the subject of graphs. The ‘association graph’ of Figure 12.5
which is essentially here a graph of trip frequencies, and shows the
numbers of journeys made between pairs of activities, is not by any
means the only type of graph we might draw of an organization. Ina
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Figure 12.10

Graph to show structure
of command in the re-
search institute

296

3 Q. P. Tabor. Traffic in Buildings 3; Analysis of Communication Patterns, Working Paper
19, University of Cambridge, Land Use and Built Form Studies, 1970.

recent paper Tabor® has distinguished a number of possible aspects
which might be represented.

Suppose that in our particular example there exists some structure of
command, that some members of the research institute direct the work of
others, so that the whole organization is structured in an hierarchic

way, with each person directly responsible to an immediate superior.
Suppose that this structure is as in Figure 12. 10. The arcs in this graph
signify the relationship ‘is the immediate superior of”’. Miss Cis still
quite independent, but each of the two separate research teams has a
group leader, E and B respectively. D and G are responsible to B; while
in the larger team there is a two-level structure of command, E directing
A’s work and 4 in turn directing F and H.

E B
4 A o
D G c
F 7

This same information can be recorded in the form of a zero-one matrix.

We take for the sake of example just that component of the graph which
corresponds to the structure of the group 4, E, F and H; we can repre-
sent this as a 4 X 4 matrix, in which an entry 1 signifies that the worker
to whom that row corresponds, is the immediate superior of the worker
to whom the column corresponds (otherwise a 0 is entered). Thus in the
first row A is the immediate superior of Fand H.

A EF H

by b
OO = O
[N e NNl
OO O -
(=R = B

An incidental but interesting property of this type of matrix is that,
when multiplied by itself, the resulting product matrix shows who is
who’s superior at one remove. In this case E is two steps up the ladder
of command from Fand H.

A EFH A EFH
A 001 172 A 0000
E 1 000 __E 0011
F 0000 ~ F 0000
H 0 00O H 0000

In a similar way the matrix of a family tree, where entries show who is
who’s parent, when squared will yield a matrix recording who is who’s
grandparent. The third power of the original matrix gives the grand-
parents; and so on.

While the structure of a graph showing who is who’s father must by its
nature have a tree-like structure — for no person can have more than one
father — graphs of the structure of command in organizations do not
always necessarily share this property. It is in situations where it is most
important that the responsibilities are quite unambiguous, and each
person at each level must take orders from one person at the level above,
and from no one else, that the organizational structure will be of strict
tree form. The army is an obvious case where this applies.

We have looked so far at two types of graph, a graph of communication
(the ‘association graph’), of the frequency of journeys made by workers
to each other; and a graph of organization, or the nominal structure of
authority and responsibility. Since we would expect almost all workers
to communicate with their immediate superiors by making visits to
them, or vice versa, then for any particular case we would expect the
two types of graph to have similarities. There might certainly be other
visits made, between workers other than just those linked in the
hierarchic organization graph; and so the organization graph will in all
probability form a partial graph of the communication graph. This is
true of our office example, and Figure 12.11 shows the two graphs
together, the one emphasized as heavy lines drawn over the thin line
edges of the other.
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Figure 12.11

Graph of structure of
command in the research
institute, from Figure
12.10, as a partial graph of
the ‘association graph’
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CcoO

We referred to the organization graph as representing the nominal
structure of authority — that is, how the structure is fi ormalized and
made explicit, how the organization is imagined to work by those who
administer it. If the communication and organization graphs are found
to differ very greatly — if the one does not contain the other as a partial
graph, and quite a different effective hierarchy appears to exist, on the
evidence of the communication graph, from that set out in the organi-
zation graph — then there are two possible explanations.

Either the institution in question does not indeed function in the way its
explicit formal structure would suggest. Or else, as is perfectly likely, the
communication of the organization’s business is going on in other ways
than by its members making personal visits (which is the only means that
our communication graph above depicts) — in writing, via the telephone,
or possibly by some other electronic means. An ‘activity’ which from a
survey of pedestrian traffic might appear to be completely isolated, could
in actual fact be the very nerve-centre of a traffic in papers or docu-
ments — a filing office for example, or a registry in a government ministry.
One of the most difficult features of planning for pedestrian circulation
is how to take account of the way in which people, when they are situ-
ated far apart in a building, may choose to use the telephone to contact
colleagues who, if they were nearer, they would visit in person. Alter-
natively, they might save various items of business up for a single trip,
where if they were closer, they would make separate journeys for each
job. Or they might take a round tour of a series of offices, depending on
the building’s particular layout, visiting a series of colleagues in turn.

For our research office, following the example of others who have
tackled circulation problems in this way, we have fixed values for the

Figure 12.12

‘association’ of two activities independent of their possible relative
Positions in a plan. We assume that the individuals concerned make
journeys with particular fixed frequencies, irrespective of how far the
actual distances travelled may be. We also assume that each trip is made
to the destination and immediately back again, and no possible round
trips are taken into account. All these assumptions are doubtful ones,
and though we shall hold to them for the purposes of the analysis, we
shall come back later to examine their serious implications.

A third type of graph which might be drawn for an institution or
business, is a classificatory graph, and this might be used to record a
variety of different aspects. Figure 12.12 is a classificatory graph for the
research office example. We assume that 4, E, Fand H belong to one
research team, and B, D and G to a second, as we suggested might be
the case. The levels in the graph indicate two stages in the progressive
breakdown of the whole institute into its smallest constituent parts — the
individual workers. The single vertex at the topmost level represents the
institute as a whole. The vertices along the bottom row are the workers.
In the centre row the workers are grouped into their respective teams,
and each of the two vertices represents a team.

research
institute

research
groups

DO G individuals

This graph-theoretical way of representing the breakdown of an organi-
zation into its constituent parts, can be directly transposed into the
terms of set theory. Each vertex of the graph is in effect a set, and the
topmost vertex here represents the universal set of all employees. At

the intermediate level are two (in this case disjoint, or non-overlapping)
sub-sets. And in the bottom row are shown all the separate one

element sub-sets (employees), or unit sets. The arcs in the graph signify
the relation that the set represented by a vertex at one level, contains
that set represented by the vertex which the arc is incident in to at the
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Figure 12.13
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level below. Figure 12.13 is a Venn diagram which is equivalent to, and
conveys exactly the same information as the graph.

The graph and the Venn diagram therefore both depict, in effect, a
step-by-step process of ‘decomposition’ of the office structure into its
constituent parts, in the graph from the top working downwards, and

in the diagram from the outside working inwards. As well as showing
how an institution’s structure is built up from administrative units or
working groups, as here, classificatory graphs could illustrate the
different grades (as for example Civil Service grades) to which employees
belonged, their posts, salaries or a whole variety of other characteristics.

These graphs are useful in revealing different structural properties of
organizations. The problem remains as to how we can best use the
information which the graphs record to produce, in some quite syste-
matic way, ‘lower cost’ layouts for particular organizational structures
and particular patterns of traffic.

In the first place, let us go back to the layout for the research institute
example which we originally described with the Table P — where 4
occupied room a, B occupied room b, and so on. There is no obvious
reason why this particular layout should be either a very good one or a
very bad one, and we shall use it as a yardstick against which to measure
the success of various systematic techniques for producing better
solutions.

The basis for such a comparison — the ‘cost’ of each different layout —
will be the sum, for all pairs of activities, of the values for the association
of those activity pairs, multiplied in each case by the distance separating
the two activities in the plan. To put this in formal notation, if d;; is the
general term in the ‘distance’ Table D —that is, the distance from the ith
location to the jth location; and if a;; is the general term in the ‘associa-

Table D

Table A

Table C

tion’ Table A — that is, the association between the ith activity and the
jth activity ; then we can express the cost of the layout P as Cp, where

CP = zizjd,-,ai,.

What exactly does this expression mean, and how is it derived ? We take
the Table D, and the Table A, which are both the same size.

a b ¢ d e f g h

12 -

16 12 -

20 16 12

8 12 16 20

12 8 12 16 12

16 12 8 12 16 12

20 16 12 8 20 16 12 -

0N 0 /o R

B C D E F G H

N

0o -
3 0 =

ES RS RS RGN AN
—_ O WwWWwNOO
OCAAONIO -
(==l = = =
oO=OoN -
N

Each element d;; from D is multiplied by the corresponding element a;;
in A, and the result d;; a;; is put in the same corresponding position in
a new third ‘cost’ Table C.

0 0

40112 0 -

72 24 0 40 -

36 0 0 O 43

0 72 0 12 16 0
20 0 0 0120 48 O
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Each value in C will thus equal the association between a pair of
activities, multiplied by the distance separating the locations in which
those activities are placed.

The expression
2.:2,d;50:

means ‘the sum of all terms d;; a,;, for all values of i and for all values
of j* - that is, the sum of all elements in Table C. The actual figure for
this sum Cp here is 660.

For special reasons in our example here, we can put a particular inter-
pretation on the quantity Cp. Since we have set association values equal
simply to the frequency of two-way traffic between pairs of activities,
then what we have done in calculating Cpis, in effect, to multiply numbers
of journeys by the distances over which those journeys were made, in
every case. Because we have introduced no cost weightings, Cp is
therefore equal here to the total distance travelled (in metres) by all the
building’s occupants during one day. Or rather, as we pointed out
earlier, since all journeys are return journeys, we should multiply Cp by
two to include the return halves of the trips as well.

If we wanted then to convert to some actual monetary cost, we could
divide the total distance travelled 2Cp by some average walking speed s
(metres/hour) to give the total time spent in travel: and multiply by an
hourly cost rate ¢ (pounds/hour) assumed to be the standard cost of all
workers’ time, to give a total cost in pounds of £(2 X 660)c/s per day.

I3 Spatial allocation procedures

Out of the many varied approaches which have been taken to solving the
circulation problem, two broadly different types of method can be
distinguished. Tabor! in his papers characterizes the two types as
‘additive’ and ‘permutational’, and other authors? have called them
‘constructive’ as against ‘improvement’. To take the ‘improvement’ or
‘permutational’ methods first: the important feature of this kind of
method is that a complete layout is produced — by some means or other,
possibly at random — at the beginning of the process. Then the positions
of activities — rooms or whatever — are permuted, swapped about in such
a way as to progressively reduce the layout cost. It is in this sense that
the methods consist in a process of improvement of some arbitrarily
selected initial starting layout.

On the other hand, a typical method of the ‘additive’ or ‘constructive’
kind starts with an empty site or empty ‘floor plane’, and builds up a low
cost layout, one activity or one room at a time. The criteria according to
which each successive activity unit is positioned are made dependent on
some measure of the association of that unit with all other units already
placed. The one type of method starts with a not especially good layout,
and attempts to improve on it. The other type attempts to build up a
good layout by stages, one unit at a time.

With permutational methods, the most direct and unsubtle approach
would be simply, of course, to go through every possible layout: to try
exhaustively every different arrangement in which the activities may be
assigned to locations, measure Cp in every case, and take the arrange-
ment where its value is least. The objections to this are not theoretical,
but practical.

The number of ways of arranging one activity in one location is one;

of arranging two activities in two locations, two. With three activities

we have three possibilities for placing the first activity. For each of these
three choices there are then two empty locations left, and so two ways of
placing the second activity. This gives six possibilities in all, since there
is now only one location left for the third activity. By a similar argument
we can see that the possibilities with four activities would be 4 X 3 X 2
% 1 = 24 in number; and in general with 7 activities the number of dif-
ferent ways these may be arranged in nlocations is n(n — 1) (n — 2)...1,
or factorial n, written n! for short.
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Figure 13.1

Figure 132.
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1 Q. P. Tabor. Traffic in Buildings 1; Pedestrian Circulation, and Traffic in Buildings 2;
Systematic Activity-Location, Working Papers 17 and 18, University of Cambridge, Land
Use and Built Form Studies, 1970.

2 C. E. Nugent, T. E. Vollmann and J. Ruml. ‘An Experimental Comparison of Techniques
for the Assignment of Facilities to Locations’, Operations Research, vol. 16, no. 1, 1968, pp.
150-73.

Values for ! for successive values of n are:
n!

1

2

6

24

120

720

5040

40 320
362 880
3628 800
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So even for our very limited research institute problem the job of
measuring Cp for all permutations of layout is certainly one for a
computer. With ten rooms the number of possibilities is up to over

31 million, and the addition of only one more room increases that
number by a further 36 million. For a problem with any realistically
large number of locations, the permutations become quite unmanage-
ably numerous, even using computers.

In some cases the number may be somewhat reduced, by considerations
of symmetry. In the research institute, since the plan is symmetrical
about the axis of the corridor, then half the possible permutations of
layout will be reflections of others; and the calculation of the layout cost
Cp will be for all intents and purposes the same (and will give exactly

the same result) for both in each pair. Equally, the layout is bilaterally
symmetrical about a second axis perpendicular to the corridor; and so
we can divide the effective number of possibilities to be examined in half
again, to account for those layouts which are reflections one of another
about this second axis.

But even this only brings down the number of effectively distinct
arrangements for eight rooms from 40 320 to 10 080. So even symmetry
considerations, where they apply, although they substantially diminish
the number of alternative layouts to be evaluated, may still leave a
numerical problem of gigantic proportions.

Nevertheless, it is of course just this kind of repetitive numerical task
for which computers are well suited ; and even if it is not possible to go

3 Op. cit.

4G. C. Armour and E. S. Buffa. ‘A Heuristic Algorithm and Simulation Approach to
Relative Location of Facilities’, Management Science, vol. 9, no. 2, 1963, pp. 294-309.
Also E. 8. Buffa, G. C. Armour, T. E. Vollmann, ‘Allocating Facilities with CRAFT’,
Harvard Business Review, vol. 42, no. 2, 1964, pp. 136-58.

exhaustively through every single solution, it is feasible and economical
to compare a great many. A large number of permutations of layout will
differ from each other only in minute detail, and many others may well
share exactly the same cost. Nugent, Vollmann and Ruml? have had
some success with a straightforward random sampling of the set of all
possible layouts for a given problem, evaluating all those chosen in the
sample, and retaining the best. This technique might appear simple-
minded. It may well miss the best solutions, or even miss a whole
number of good solutions, depending on the relative size of the sample
taken. Nevertheless, it compares well in its results for an equivalent cost
in computer time with other more elaborate approaches.

No method, other than going exhaustively through all layouts, is
absolutely guaranteed of finding the solution (or solutions) of lowest
possible cost. All other approaches are heuristic: they employ strategies
which will tend to lead towards better solutions, but are not bound to
produce the optimum.

A technique which has been used by several authors to reduce the size of
the combinatorial problem, is to examine not a complete permutation of
all positions of activities, but to examine the effect of swapping only
pairs of activities at each stage. Some particular starting layout is chosen,
and all pairs of activities exchange their locations in turn. Any swap
which effects an improvement in the layout (i.e., reduces the cost) is
retained. Otherwise the two activities are returned to their former
positions. The process goes on until no further improvements are
possible: until a complete cycle of pair-wise swaps is tried without any
change in the layout resulting.

The method described is, in broad terms, that devised by Armour and
Buffa,* whose original paper in 1963, and their subsequent development,
with other authors, of the CRAFT programs for ‘facilities allocation
problems’ mainly in industrial plant layout, have provided the inspira-
tion for most subsequent work on permutational methods. Armour and
Buffa’s basic procedure differs in detail somewhat, in that instead of
making the first exchange which gives a lower cost, as soon as it is
found, they measure the cost of all possible pairs of swaps in a given
starting layout, before altering the plan. They then make the swap

which gives the greatest cost reduction, and start the process again. The
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. . : . Figure 13.1
We can illustrate this with a worked example. Let us take as a starting Successive stages in the
point the layout already costed for the research institute in Chapter 12, aPPli;la,‘i"t‘?t“’t the re- . A (L 3 @
and shown in Figure 12.2. Its circulation cost was 660. Figure 13.3 f,cfa:?p;:;&;;::;{np © T 9
follows in diagrammatic form the various steps in the application of the method for the allocation ; :
method, as a tree of permutational alternatives. The order chosen for Zf “ﬁ"“‘esatl’;sgdf’“ SIS
e . . . . rmour an ufia’s
swapping activity pairsis 4 < B, A < C, A < D, etc.,to A < H, then original approach, withs
B+ C,B~< D..B< H,then C< D, C<E..., and so on. Where any variation suggested by
of these swaps results in a higher, or only an equal total cost, the layout f"‘ H. :}089?- Permuta-
is left unchange.d.‘But wl.lere a swap results in a cost redgction, the iil?;:;.t:; ;15 fﬁ:ﬁ AR’ (X EH @
rearrangement is immediately made, and the next swap in the sequence indicates a possible swap a & &
is then tried in the new reorganized plan. of A with B, etc. The pair T ROR
of rooms actually _Q
. . swapped at each stage
The first swap which reduces the cost here is B < C, from 660 to 616. are indicated with heavy
The swap is represented in the figure by the edge at the extreme right of °“ﬂin‘iljg ﬂﬁle plan dia-
. . . gram. The figures give
Fhe tree at 1ts_ topmost level. The next swap to result inan improvement Sotal layotit co5ts Tor sach 3 & 5
is B« H, bringing the cost down to 580. The successive rearrangements permutation of arrange- \S‘g a a 3 8 @ a
ment. L = o )
] R D AR
X E E ¥ X X X

306 J

AF 536 O
AG 7120
AH 5360




e |If
G| D

Figure 13.4

308

6 J. M. Seehof, W. O. Evans, J. W. Friedricks and J. H. Quigley. ‘Automated Facilities
Layout Programs’ in Proceedings of the Association for Computing Machinery, 21st
National Conference, 1966, Washington D.C., Thompson, 1966.

of the plan corresponding to these swaps are shown at each level in

the diagram. The search descends ever lower down the tree, until it
reaches a cost of 528 with a second exchange of B < C, at the 36th swap
evaluated. After this point another complete cycle of pair-wise exchanges
results in no further improvement.

This solution is quite a reasonable one. The two groups of researchers
are separated into two halves of the plan, and Miss C has an office at the
end of the row. We can show, however, that the solution is ‘sub-
optimal’, and that lower cost arrangements are possible, just by com-
paring it with the layout we worked out intuitively from an inspection
of the graph of trip frequencies, in Chapter 12 (Figure 12.9). The layout
is illustrated again in Figure 13.4; its cost is 492. The reason it is better is
because of the positions of 4 and E. The group 4, E, F, H remains
together, but 4 and E have more communication with the members of
the second group B and D, than do H and F, therefore to place them
towards the centre of the plan instead of at the end, results in a cost
reduction.

Why was this particular rearrangement not made by the systematic
application of the permutational method ? The reason is to do with the
fact that 4 and E started at the extreme left-hand end of the plan. The
two are very strongly linked to each other. The method swaps only
pairs of workers at once. If either 4 or E is to be moved, either they
swap with each other, which has no effect here; or else either one or the
other is exchanged with any of the six remaining workers. In all cases
this means a net cost increase, because either A is moved away from E,
or E away from 4 ; and the cost of this separation of 4 and E more than
counteracts the lowered cost resulting from the closer contact with B
and D. The only way the required improvement could be made is to
move both A and E at once, and swap them with H and F respectively.
But this, of course, is the one thing the method cannot do. Had we
chosen to start from some other initial arrangement, with 4 and E
separated, or else positioned together at the centre of the plan, the
likelihood is that a better solution would have been reached.

Various ideas have been put forward for getting round these difficulties.
Different ways of choosing an initial layout are possible: either to
generate a number of layouts quite at random, and take the best, as
suggested by Seehof and his colleagues.® This in effect combines random

h

7@G. C. Armour and E. S. Buffa. ‘A Heuristic Algorithm and Simulation Approach to
Relative Location of Facilities’, Management Science, vol. 9, no. 2, 1963, pp. 294-309.

8 A suggestion made in conversation by O. P. Tabor.

sampling with the ‘improvement’ type of method. Or else to produce a
starting layout intuitively, ‘by eye’, and use an improvement method to
make refinements of detail, as Armour and Buffa? propose. Their
attention in any case is directed particularly towards business manage-
ment problems, of reorganizing the factory floor or warehouse plan,
where some existing arrangement requires alteration.

One of the simplest expedients® might be just to add up the column
sums in the ‘association’ table, and arrange them in descending order of
magnitude:

E A B D F H G C
24 15 15 12 10 10 8 O

and add up the columns sums in the ‘distance’ table, and arrange them
in ascending order:

g f ¢ b h e d a
88 88 88 88 104 104 104 104

(For our particular example, because of the symmetry of the plan, the
column sums of the ‘distance’ table give only two different values, one
for the four ‘inner’ rooms, and one for the four ‘outer’). We have now
arranged activities such that the activity whose association with all
others is greatest comes first, and so on; and we have arranged locations
in order such that the one for which the combined sum of distances to
all other locations is smallest comes first, and so on. We then simply
match the two series together pair-wise,

gfcbhed“a
E A B D F H G C

and, if God is just, the corresponding layout should at least be better
than one randomly selected, since roughly speaking the most visited
activities will in this way be put in the most accessible locations. The
cost of the layout achieved here (Figure 13.5) is 612, which, if not
spectacularly low, is at least better than that of our previous starting
layout (cost 660) for which it might usefully have been substituted.
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9 M. J. S. Beaumont. Computer-aided Techniques for the Synthesis of Layout and Form with
respect to Circulation, unpublished PhD thesis, Department of Engineering, University of
Bristol, 1967.

But in whatever way the initial layout is selected, there always remains
the problem that the method always follows from that point a unique
sequence of moves; and from the given starting point only one final
arrangement can be reached. The resulting layout, when the process of
exchanging pairs of activities stops, may still be ‘sub-optimal’. It has
been suggested® that when this stage is reached, then it might prove
fruitful to work back through the tree of layout permutations, making
swaps which are apparently unpromising and which actually progres-
sively increase the cost (taking them in that order); in the hope that these
‘detours’ might lie on the paths to still better solutions. Such a strategy
however does not seem to have been much tried in practice.

The second type of systematic approach to the circulation problem we
have referred to under the name of ‘additive’ or ‘constructive’ methods.
The essential characteristic of these methods is that instead of making a
series of changes to some initial layout, they start with one single
activity in position, and build up a layout gradually by adding other
activities one at a time.

Every ‘additive’ procedure has two essential features. The first is some
kind of spatial framework within which the plan is assembled. Clearly,
although the general overall form of the final plan is not predetermined —
as with the permutational methods — there must nevertheless be some
constraints on the geometry of the layout as it is built up. This might be
done in the simplest way by dividing up the site or floor plane on which
activities are to be arranged with a rectangular grid for example, each
cell of which becomes a potential ‘location’. The second requirement is
for some criterion by which to decide in what order the activities should
be placed, one after another, in the plan.

Another illustration using the research institute will make clear the
significance of these two features. In order that the result given by an
‘additive’ method shall be roughly comparable with that given by the
‘permutational’ method previously illustrated, we shall perhaps rather
artificially constrain the example here. Although the shape of the final
plan is not to be completely fixed in advance, we shall assume that its
general form is to consist of two rows of offices separated by a central
corridor as before, with the dimensions of the corridor and of each
room the same as in the earlier analysis. We can imagine the ‘spatial

Figure 13.6

10B. Whitehead and M. Z. Eldars. ‘An Approach to the Optimum Layout of Single-Storey
Buildings’, The Architects’ Journal, 17 June 1964, pp. 1373-80.

framework’ within which the plan is to be produced, therefore, as a
corridor of indefinite length, flanked by an indefinite number of poten-
tial positions for offices either side.

- -

The method we shall use is based loosely on that of Whitehead and
Eldars,'? as described in their paper. It should be emphasized that in
Whitehead and Eldars’s own examples, however, and those of other
proponents of similar methods, the form of possible layouts is not so
rigidly constrained as here, either in the outline of the plan perimeter or
in, for example, the position of circulation routes.

The next step is to decide an order for the placing of activities. The first
activity to be positioned is that with the greatest association with all
other activities. In our case, this means the research worker who is
visited most and who makes most visits, and this is Dr E. Figure 13.7
will illustrate successive stages in the build-up of the plan, and the first
stage shown at the top of the diagram consists in the placing of £ in some
arbitrarily chosen position in the plan framework. The next activity to
be located is that which, of those remaining, has the highest association
value with the activity E already placed —in this case 4. The relative
values for the association of all activities with E are shown at the top
right of the figure.

Having decided to place Mrs 4 next, we must determine the exact
position she is to occupy. The standard procedure for this positioning
of successive activities will be to move each activity in question around
all the possible positions adjacent to those activities already placed,
measure the layout cost in each case, and put the activity in the position
which gives the least cost. (It will not in fact be necessary to measure the
complete layout cost for every position, only that portion of the cost
dependent on the association of the activity being positioned with the
activities already in place. It is only this component of the total cost
which will be changed by moving the one activity around the plan.)
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Figure 13.7 (opposite)

It is easy to see that in the present example the best position for 4 isin an
office directly opposite E, since in this position the distance between the
two is least. The next activity in the sequence is that which has the
highest value for its combined association with a// activities already
placed. This is the rule by which successive activities are chosen in
sequence for placing. The worker in question in the example is F. All
four locations immediately adjacent to 4 and E in the plan are at equal
distance to the positions occupied by both these activities (Where
distance is measured along the same kind of rectilinear ‘tree’ as
previously); it is, therefore, a matter of indifference which of the four is
chosen for F, since the total layout cost is the same in all cases.

Once Fis put in, however, (arbitrarily in one of these four places), the
choices for H, the next activity, comprise three effectively distinct
positions. The cost differences for these are indicated with the diagram-
matic layouts. The value given for each alternative is the combined total
of the association values of H with E, F and 4, multiplied by their
respective distances from H.

This same process is gone through for each of the remaining research
workers in order, and the subsequent states of the growing plan are
shown in the figure, with alternative positions for each new worker at
each stage illustrated and costed. The position of Miss C, who remains
unplaced to the last, is quite optional — since she has no association with

any other workers.

The final layout produced in this way is like one we have seen before.
It is effectively identical with the original plan in the last chapter which

Successive stages in the
application to the re-
search institute example
of an ‘additive’ method
for the allocation of acti-
vities, based on the ap-
proach of Whitehead and
Eldars. Each successive
level in the figure corre-
sponds to the placing of

one activity, and the plan
diagrams illustrate with
heavy outline the alterna-
tive locations available,
with their associated cost
in each case, for the
placing of the activity in
question. The ringed
figure is the cumulative
total cost of that part of

the layout so far com-
pleted. The values given
for each activity in the
left-hand column give
their association with
those activities already
placed; the highest value
at each stage determines
which activity is to be
located next.
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Figure 13.8
‘Diagrammatic layout’
achieved by Whitehead
and Eldars for their
hospital operating theatre
example, before final
modification by hand.
Their method clusters
the twenty-one activities
into a deep plan around
the principal circulation
(13) and the theatres (9
and 14), in an essentially
concentric arrangement.
Shading denotes main
circulation areas.
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we designed without the help of any systematic method. The total cost
in both cases is 492.

On the showing of this one simple example, therefore, t.he additive
method has produced a better result than the permutational metth.
The exact form of the solution given is due, however, to the very highly
constrained ‘spatial framework’ we imposed on the additive example.
As the number of activities handled increases, and equally if the plgq
form is less rigidly controlled, so the difficulties inherent in the additive
type of method will loom larger.

Since the approach by its nature really implies that no prior decis}ons
should be made on the final plan shape desired —indeed the very inten-
tion is that the application of the method itself should produce the plan
form — then it is somewhat improper, on the method’s own terms, 'fo do
as we have done and to fix circulation routes beforehand along which
rooms are to be strung, for example, or to predetermine an envelope
into which rooms are to be packed. In the example given by Whitehead
and Eldars, that of the design of an operating theatre complex for a
hospital, the spatial framework they establish is npthing more than a
simple empty floor plane divided with a square grid Whl(fh deﬁpes t.he
‘locations’, and upon which the plan may extend indefinitely, in prin-

5 |[o 17 2
6 iAo 15 8 |8
%
4 |3 1
9 13 14
12 16
11 10 7

ciple, in any direction. In the nature of the system the plan is built up in
a concentric fashion, around the first-placed activities (Figure 13.8). The
criterion upon which each successive activity is given a position is that of
distance to other activities, and it follows that activities tend to cluster
around the centre of the plan in rings.

This might well be right for the particular kind of planning problem
which Whitehead and Eldars pick upon; one where a series of ‘servant
spaces’ are grouped around a central dominant suite of rooms, and the
annular organization of the plan expresses this hierarchy. It happens too
that there are no special demands for any of the central spaces, the
theatres themselves, to have natural light or a view, and the plan can
permissibly be a deep one with a minimum length of perimeter.

But it is only in a few types of building that this kind of situation arises.
More usually we might expect to find not so pronounced a circulation
hierarchy, but instead perhaps requirements for a series of loose
groupings of rooms, with no very dominant links. More important,
though, is the fact that for many buildings it will be desirable that the
majority of rooms lie on the perimeter (so as to allow windows); and
therefore with any large number of rooms the building’s form must be
elongated, either vertically or horizontally, and narrowed, so as to
increase the perimeter area and reduce the unlit central ‘core’. The basic
additive method cannot effect this elongation without special con-
straints; since without constraint it will continue to put all activities
together into an agglomerated mass.

Furthermore, in an extensive plan, we require that the circulation routes
of the building, the corridors and staircases, form some coherent and
economical system, and do not ramble about chaotically. But using a
method which assembles a plan piece by piece and where rooms or
activities are treated as relatively independent units which can be added
together one by one, then it is inevitable that these overall systematic
constraints, acting on the geometry of the building envelope and on the
structure of its circulation routes, will not be satisfied. The whole must
be more than the sum of the parts. The kind of plan perimeter resulting
from an additive or constructive type of method in their simplest
applications is often irregular and ragged; there has to be some tidying
and reorganizing of the layout done by hand afterwards, before the
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Figure 13.9

Layout produced in an
exercise by Beaumont
using an ‘additive’
method with additional
constraints on the form
of circulation spaces and
on the plan perimeter.
Shading denotes circula-
tion; the hollow dotted
squares are ‘perimeter
elements’ which must be
positioned adjacent to
some external area. In
this way requirements for
side-light are accounted
for. But the resulting plan
form is ragged and the
constraints do not act
systematically.

216

11 M. J. S. Beaumont. Computer-aided Techniques for the Synthesis of Layout and Form with
respect to Circulation.

result is acceptable as a building design. As Whitehead and Eldars put
it: “The last stage in the process is to convert the theoretical layout into
practicable form.”

Brave efforts have been made, notably by Beaumont,!! to take account
of lighting and circulation considerations during the process of gener-
ating the plan itself. Beaumont’s answer consists broadly in attaching to
those activity units or rooms for which it is appropriate, extra, adjacent
areas, one kind to act as circulation access space and another to lie
adjacent to the room outside the building perimeter, and thus ensure
that the room in question can be properly lit - ‘a kind of floating light-
well’. A series of checks made during the program’s run are designed to
control the positioning of activities and their associated extra areas,
such that the circulation spaces should connect into continuous cor-
ridors, and that the external ‘light and view’ areas should not become
enclosed or blocked by other units (Figure 13.9). This strategy is not,
however, successful, since the attempt is still made to satisfy what are
requirements governing the overall form and structure of the plan, at
the level of the plan’s constituent parts. Envelope and routes cannot be
broken into separate ‘particles’ or ‘atoms’ and treated as such.

What is more, natural lighting and the structure of the circulation
system by no means exhaust the list of factors which affect the design of
the overall building form, and whose requirements cannot be met at the
detailed level in the relationship of activity units one to another. These

might be considerations governing the building’s structure, and the
method of its construction. There might be other environmental aspects
bes}des that of lighting to be taken account of — heating, ventilation,
noise problems. And there might be limitations imposed by the size and
shape of site onto which the plan is to be fitted, its orientation and
relation to adjacent buildings.

So far we have been speaking mostly of additive or constructive type
methods as applied to single-storey layouts. When in the next chapter
we go into layouts of more than one floor we will meet new difficulties,
mostly in relation to the measurement of distance.
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Figure 14.2

I |
Figure 14.3

Figures 14.4, 14.5 and
14.6
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14 Networks, distances and routes

For measuring distances between ‘locations’ on a single floor level,
there are three possibilities, representing various degrees of approxi-
mation. In the first place there is the straight line or ‘airline’ distance
between locations (Figure 14.1) — one might use the term ‘bee-line’ were
it not for the fact that bees frequently move in lines which are far
from straight. The second is what has been called ‘rectangular’ distance
(Figure 14.2), and the reason for using this measure is to do with the
fact that in buildings planned with a rectangular geometry the circu-
lation routes will tend to run orthogonally, following the building’s
main axes. To measure distance in buildings as direct straight lines is
clearly very approximate, since in many cases these lines will cut
diagonally across a plan, and such routes could never in reality be
followed. The rectangular measure splits the distance into two com-
ponents at right angles. The two types of measure, rectangular and
airline, and their relationship according to Pythagoras’s theorem, have
been noted earlier, in Chapter 5, in the discussion of the distance
between two quadrats. It is clear that the rectangular distance will be
the same for journeys made in any number of ‘steps’, moving always
orthogonally, so long as none of these steps involves a doubling back
(Figure 14.3).

The third possibility is to measure, with greater or lesser accuracy, the
length of ‘real’ routes plotted along the actual circulation system of the
building in question. This is what we did with our earlier worked
examples; it will be seen that even in those very simple cases several of
the distances between locations were measured along routes which
double back. And the more complex the plan, in general the more such
detours can occur.

Figures 14.4-14.6 illustrate the three types of distance measure in the
research institute plan. In one case the airline distance (Figure 14.4)
between two offices is exactly equivalent to the rectangular, and in
another case the rectangular distance (Figure 14.5) is equal to the real

Figures 14.7 and 14.8
Diagrammatic single-
storey plan layouts, each
of 32 same size rooms,
compared for mean jour-
ney lengths (measured as
real distances) in Tabor’s
experiment.

L T O O Ty

1 0. P. Tabor. Traffic in Buildings 4; Evaluation of Routes, Working Paper 20, University of
Cambridge, Land Use and Built Form Studies, 1970, pp. 28—40.
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(Figure 14.6). The other examples illustrate the considerable variations
possible using the different measures. The approximations involved in
taking airline or rectangular distance can become very large, and the
reason they are adopted at all is that in additive systems of plan genera-
tion the position and design of the circulation system is not fixed in
advance, and therefore no estimate can be made of the ‘real’ distances
which might be travelled in the final resulting layout.

Tabor has illustrated the approximations involved in relation to some
hypothetical building layouts representing a range of simple geo-
metrical forms.! He has planned 32 same-size rooms, on one floor, in
diagrammatic buildings of five different types: a straight block with a
‘single-band’ layout (see Chapter 6), a similar block but with a ‘two-
band’ plan, a four-armed cross again planned in two bands, and two
square courts, one single-band, one two-band (Figure 14.7). For each
form in turn he calculates all of the 496 possible journey lengths between
pairs of rooms, according to the three different distance measures. The
graphs of Figures 14.8 and 14.9 summarize his results, by comparing the
mean journey lengths for the five forms. Figure 14.8 illustrates mean
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Figure 14.9

Comparison of the three
types of distance measure
in Tabor’s diagrammatic
plan forms. Mean jour-
ney lengths are calcu-
lated using straight line
and rectangular mea-
sures, and plotted here as
percentages of the mean
values derived taking real
distances.
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journey lengths calculated as real distances; in Figure 14.9 the means
derived from using the two more approximate measures are plotted as
percentages of the real distance in each case.

The rectangular distance for all the building forms is between roughly
80% and 909%, of the real figure. The showing of the straight-line mea-
sure is very much poorer. Only with the single-band slab, where very
slight doubling back occurs, does the straight-line distance come near
the real measure. The two-band equivalent drops to 509 ; and for the
court and cross forms, where it is clear that many journeys involve large
detours from the straight line, the corresponding figures are between
35%, and 409%,, a very sorry performance.

The fact is that additive methods have been mainly applied to produce
deep plans of centralized form, where the approximate measures are
somewhat less of an approximation than in the elongated and hollow
forms here. Nevertheless, it will have been obvious from our earlier
worked examples how sensitive the procedures of allocating activities to

locations can be to even slight differences of distance; and thus how even

small approximations in measurement could lead to the production of
quite different layout results.

For a building planned on several floors the question of the measure-
ment of distance becomes yet more crucial. The distance between two
locations on different floors must be mcasured in three parts: the
horizontal distance from the first location to some vertical circulation

2 See, for example, University Facilities Research Center, with Educational Facilities
Laboratories Inc., Horizontal and Vertical Circulation in University and Instructional
Buildings, New York, EFL, 1961, p. 6.

3 Helen Parlow. ‘Lift Operation and Computers’, The Architects’ Journal, 23 March 1966,
p. 747.

4J.J. Souder, W. E. Clark, J. I. Elkind and M. B. Brown. Planning for Hospitals; a
System Approach Using Computer-aided Techniques, Chicago, American Hospital Associa-
tion, 1964.

point, a staircase or lift, the vertical distance travelled between the floors,
and the horizontal distance from the lift-shaft or stair-well to the second
location. Each horizontal section might be measured as a straight line, a
rectangular or a real distance. To put the horizontal and vertical
measures on a comparable basis it will be necessary to express each
distance as a length of time required to travel along that part of the
circulation system.

Some experimental work has been done to determine average walking
speeds in buildings, both on the flat and speeds for climbing and
descending stairs. The measurement of an average speed on the flat is
simple enough in principle, and there is evidence to suggest that con-
gestion is rarely bad enough in corridors and passageways to slow the
walker significantly.? Tabor uses for his experiments an average of

1 -5 metres/second, equivalent to the widely accepted figure of

3-3 miles/hour. For stairs a typical corresponding figure would be
0-3 metres/second, measured as the net speed of vertical movement,
both for ascending and descending.

For lift travel, on the other hand, a great deal of complication may
arise, both in theory and in practice. Not only may lifts travel at very
different speeds, but the time taken for a lift journey will be dependent
also on the waiting time, which in turn will be a function of the design
and capacity of the lift installation, and of the pattern of traffic which
the lifts must carry. Congestion here can have an appreciable effect on
travel times, and thus the length of a lift journey, measured in terms of
time, can vary even for different hours of the day.

For a given design of installation, and for a given pattern of lift use, then
the arrivals of users and the movements of the lifts themselves might be
simulated in detail ; as for example in a computer exercise carried out by
Parlow,3 who is able by this means to make very fine calculations of the
lengths of lift journeys, depending on the particular circumstances of a
particular building. It is even possible, as in the COPLANNER system of
Souder and his colleagues,* for alternative routes by stair and by lift to
be compared for ‘time length’, and trips to be assigned to one route or
the other according to the current traffic load on the lift system.

But these elaborations of treatment are only justified — and only pos-
sible — where the intention is to evaluate the performance, in circulation
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5 Q. P. Tabor. Traffic in Buildings 4; Evaluation of Routes, pp. 40-58.

terms, of some layout already designed in detail. Where the purpose is
to generate a layout, using additive methods, the problem is put the
other way round.

We have discussed how with a one-storey layout, the spirit and intention
of the additive type of method require that the circulation structure and
the building envelope should not be fixed in advance, but instead should,
in principle, be produced by the application of the method itself. Such
lack of constraints on the process created its problems, just for a single-
level layout. With layouts on more than one floor, the ‘spatial frame-
work’ within which the plan is to be built up cannot be established at all
without deciding first on a definite number of floors which the design is
to comprise, and then on the particular positions which vertical circu-
lation is to take. For without the vertical circulation fixed, then distances
between locations on different floors cannot be measured to any degree
of approximation at all.

A further series of experiments which Tabor® has made are designed to
indicate just what effects these prior decisions about numbers of floors,
and about the position of vertical circulation points, are likely to have
on distances. He takes three of the same diagrammatic forms as before,
the two-band slab, the rectangular cross and the two-band court. He
takes a fixed area of accommodation — 96 equal size rooms — and plans
these rooms in the different configurations. He plans a series of layouts
on different numbers of floors; and since the total number of rooms
remains constant throughout, so, therefore, the diagrammatic buildings
become smaller in plan — though keeping the same shape — as they
become taller.

A series of standard figures for dimensions and travel speeds are
assumed throughout — for floor-to-floor heights, walking speed, and the
vertical speed of stair travel, and standard allowances are made for
waiting and door opening times for lifts. Two different speeds of lift are
tried, at the rough limits of the range of speeds used in practice,

0-75 metres/second and 2-25 metres/second. For each form, and for
given positions of stairs, and positions and speeds of lift, Tabor
measures, in terms of travel times, all the distances between pairs of
locations. He then calculates the mean travel distance for each case,

as before.

The results of these experiments are complex, and the particular effects
of different combinations of numbers of storeys and positions and speeds
of lifts cannot be summed up simply. The general conclusions which do
emerge, however, are that the increase in number of floors reduces
internal distances, with the examples studied ; and the position of vertical
circulation, especially the degree to which lifts are placed eccentrically
away from the middle of the plan, has at least as much effect on mean
distances as does the number of lifts.

The implications are that fixing even just a broad spatial framework
and skeleton vertical circulation system for a building on a number of
floors, in itself affects in a significant way the pattern of distances
between locations. This in turn puts an effective limit on the best layout
cost which might be achieved inside that framework. With another
framework it seems, with a different system of vertical circulation, a
quite different optimal layout with a quite different layout cost could be
achieved for the same given associations between activities, and using
the same plan generating method.

These strictures apply yet more forcibly, of course, to the permutational
kind of approach, where the exact detailed arrangement of the plan.is
fixed at the start, and not just its general framework ; then improvements
are effected within that plan. The range of solution costs possible is
strictly limited by the initial choice of plan form.

With permutational methods there are no theoretical problems in
predicting the form a circulation system might appropriately take.
There are, by contrast, some practical problems arising here though,
in the measurement of ‘real’ distances along some given system.

We have mentioned in Chapter 11 how the circulation routes in a
building might be regarded as forming a network (in the special graph
theoretical sense). The vertices of this network correspond to two
different types of point in the plan: to the locations (or rooms) as marked
by their centroids, and to the junctions in the system of horizontal and
vertical routes. The edges correspond to short segments of these routes,
and the values attached to the edges represent the respective lengths of
the segments. Each of these ‘lengths’ would be appropriately calculated,
for a multi-storey building, as a length of time required to move between
the two points involved. The junction vertices will have at least three
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¢ Described by C. Berge in The Theory of Graphs and its Applications, London, Methuen,
1962, p. 65.

incident edges (or else they are not junctions); and the vertex marking
each location will in general be a pendant or terminal vertex, that is, a
vertex with which only one edge is incident.

The circulation network for the research centre example comprised 12
vertices and 11 edges, and it took the form of a tree (Figure 14.10). It
happened that in that case, due to the particular dimensions of the plan,
all edges were of unit length 4 m. A simple theorem states that a tree
with n vertices has (n — 1) edges; this may be demonstrated by the fact
that the simplest possible tree has one edge and two vertices, and every
time a new edge is added, if the graph is to remain a tree, then one new
vertex must be added also. Between any two vertices in a tree there is a
unique chain of edges (that is, a simple chain, or chain which includes
no edge more than once), and this represents the shortest route between
the two points. If a new edge is added to the tree but not a new vertex,
then a cycle of edges is introduced and the network loses its tree form.

As soon as this happens, it means that alternative routes exist between
some pairs of locations. Either the corridors on a single floor joinin a
cycle of edges, or else the cycle is formed by there being more than one
vertical link between floors. We assume that, in the rational world of
circulation studies, everyone travels by the shortest available route. So
we must measure all possible routes, and compare them for length, to
find the shortest.

In a small network (like Figure 14.10) this is an easy job to do by hand.
But as the number of vertices in the network increases the process
becomes more tedious. The very elegant network drawings made by
students at Ulm for the plan of their own Design School give an idea of
the size of problem of finding shortest routes for a medium-sized
building (Figure 14.11). One might begin to look in these circumstances
for methods which could be expressed as algorithms, and so be mecha-
nized, using the computer.

It is worth noting in passing the suggestion of H. W. Kuhn for a physical
model of network structure for solving the shortest route problem, made
with string edges, knotted at the vertices.® The length of each string is
proportional to the length of the edge in the network. The shortest
distance between any pair of vertices is found then by picking the string
mesh up at the two points in question, and pulling it taut.

Figure 14.11

Student exercises from
the Ulm School of De-
sign. Students were asked
to represent the ‘topo-
logical linking of the
various rooms and the
average traffic density’
along routes, in the plan
of their School’s own

building. Illustrated are:
the basic circulation net-
work, and networks
showing information on
traffic flow ptesented in
three different schematic
forms, by Karel Links,
Robert Couch and Jiirgen
Bottcher.
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7 L. R. Ford. Network Flow Theory, Santa Monica, California, RAND Corporation Paper
P. 925, 1956.

Computer procedures for doing the same job fall into two main types,
either matrix methods, or ‘graph traversing’ methods. Kuhn’s simple
string model, which is so easy to visualize, gives the essential principle
for one of the methods of the latter type, the procedure known as Ford’s
algorithm, which we shall describe. Unfortunately, as often happens,
what is a simple job for the human eye becomes somewhat elaborate
when it must be expressed in a set of numerical or logical rules for the
purpose of programming. The advantage which the computer has is its
speed, which qualifies it to carry out these tasks only when they become
repetitive and lengthy.

We can illustrate the working of Ford’s algorithm? by taking an
example — the network of five vertices shown in Figure 14.12. The
lengths of each edge are indicated, and the algorithm will be applied to
determine shortest distances from one vertex a to all other vertices. The
process consists in attaching values to vertices in the graph, equal to the
distances of those vertices, measured by various routes, from the
starting vertex.

The first step is to give the value 0 to @, and then to move out along all
edges incident with @ and label all adjacent vertices, in this case b and ¢,
with their distances from a, which are 3 and 7 respectively (Figure 14.13).
We now move out along all edges incident with each vertex labelled in
the first stage (Figure 14.14). Take for example 5. We move out from

b, to c and d. We calculate values for these vertices by adding to the
value for b, the length of the edge (b, ¢) or (b, d) in the respective cases.

4
12
4
4
4 4
4

Figure 14.15

8 Z. Prihar. ‘Topological Properties of Telecommunication Networks’, Proceedings of
the Institute of Radio Engineers, vol. 44, 1956, pp. 929-33.

Two possibilities now arise. Either we find a vertex which is so far un-
labelled, as for example d; in which case we give it the calculated value 8,
which is the distance of d from a, via b. Or else we meet a vertex which
has been already given a value previously, as with ¢. We compare the
value we have for the distance via the present route with the value which
the vertex already carries, and if it is less, we replace the one with the
other; for the present value must equal the distance measured via a
shorter route. With the vertex ¢ we calculate its distance from g via the
route (a, b, ¢) to be 5, whereas ¢ has a value given in the first stage of 7
(for the route (a, ¢)). We therefore replace the value 7 with 5.

At every stage we move out in similar fashion from all those vertices
given new values at the previous stage, changing values where required,
until all vertices are labelled. The three steps needed for the example
here are depicted in diagrammatic form in the figure. The value on any
vertex now gives its respective shortest distance from a. Note how the
method goes through effectively a similar process to that which is
completed, instantaneously, with the tightening of the string model.
The algorithm does on the other hand produce, with one application,
the distances from one vertex to all the others in the network. To find
all shortest routes, between all pairs of vertices, the method must be
applied to every vertex in turn.

To represent the matrix type of method we shall instance an algorithm
due to Prihar.® His method can be applied only to networks where the
edges are all of equal length (like Figure 14.10), a serious limitation for
this purpose, but one which can in principle be overcome by inserting
extra vertices along unequal edges, so as to divide them into shorter
segments of standard length (Figure 14.15).

We take a matrix G associated with the network. This is a zero-one
matrix of the kind described earlier, in Chapter 12, in which the general
element g;; takes the value 1 to signify the presence of an edge in the
network joining the two vertices i and j. Where no edge joins i and j,
then the element takes the value 0.

The (symmetrical) matrix G = [g, ;;] below corresponds to the simple
(symmetrical) network of five vertices which is illustrated. (Symmetrical,
in the sense that this example contains no arcs, that is no one-way links,
although the method could equally cope with these.) It is clear that
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wherever a 1 is entered in the matrix, then this means that in the network
the shortest route between the corresponding two vertices is of unit
length. We start to compile a table of shortest distances, with their
lengths shown as a number of edges, and we can enter the distances of
length 1 straight away.

Matrix G Table of
shortest distances
a b c d e a b c d e
al0 1 0 1 1 a -
b1 01 0 1 b 1
cl01 0 0O c 1
dl1 0 0 0 1 d 1
ell 1.0 10 e 1 1 1

The matrix is then squared. Each element in this second matrix

G = [g,, ;] gives the number of different chains, two edges long, which
join that pair of vertices. The element g,, »q has value 1; there is one
two-edge chain only, (b, e, a). Between e and a there are two, either

(e, b, a) or (e, d, a); and gy, ca takes value 2. On the leading diagonal of
the matrix are the number of two-edge chains from a vertex to itself, that
is, for example, (g, e, a), (a, b, a) and (g, d, a). The chains in this case are
not simple chains, but composite, for they include the same edge more
than once. The values of these diagonal elements (g2, aa = 3, €tc.), can
be seen alternatively as representing the number of edges incident with
each respective vertex.

Matrix G Matrix G? Table of
shortest distances

a b c d e ab c de a b c d e
al0O 1 0 11 al3 1 112 a
b1 01 01 b1 3 0 21 b 1
cl®1 0 00 cl® 0 1 01 c 2 1
dl1 @0 0 1 dl1 ®0 21 d 1 2 .
el1 1 @1 O el2 1 @1 3 e 11 21

We now compare the two matrices G and G2. The element g, 4, for _
example, takes the value 0; but the element g, in the corresponding

9 An economic variant of the cascade method is described by J. D. Murchland in 4 New
Method for Finding all Elementary Paths in a Complete Directed Graph, London School of
Economics, Transport Networks Theory Group, Report 22, 1965.

position in G2 takes the value 2. This means that there were no one-edge
links between vertices d and b, but there are 2 two-edge links ((d, @, b)
and (d, e, b)). It follows that the shortest distance between d and b is two
units. And this is true for any case where the element g;, ;; = 0, but the
corresponding element g,, ;; takes some value > 0. We put all these two-
edge links in the shortest distance table.

We now take the cube G® = [g;, ;;] of the original matrix. The elements
in this matrix give the number of three-edge chains between vertices.
There is only one element g3, 4, with a value > 0, for which the corre-
sponding elements g, 4, and g,, 4, in G and G? were both zero. dand ¢
are therefore the only pair of vertices which are joined neither by a one-
edge nor a two-edge chain, but only by a three-edge chain. The shortest
distance 3 is therefore put in the table, which is now completely filled.

Matrix G® Table of
shortest distances

a b c d e a b c d e
al4 6 1 5 5 a
bl6 2 3 2 6 b 1 -
¢fil 3 0 2 1 c 2 1
dl|5 2 ® 2 5 d1 2 3 -
e|l5 6 1 5 4 e 1 1 2 1

With larger networks the process would carry on in the same way, taking
ever increasing powers of the original matrix until all elements took at
some stage non-zero values, and the corresponding shortest distances
could be transferred to the table.

This method, of course, unlike the graph traversing technique, produces
all shortest distances in a network at once, and not just distances from
one vertex to all others. The difficulty with Prihar’s particular algorithm
for problems like circulation networks is the requirement that all edges
be of equal length. We have chosen to describe this method because it is
neat and surprising. With a complex network though, a great many
extra inserted vertices may be needed, giving a matrix whose size is
unmanageable even for the computer. Nevertheless there exist more
economical matrix methods, notably the so-called ‘cascade’ algorithm
which can cope with edges of unequal length.®
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A whole range of network problems connected with measuring distance,
with shortest routes and with traffic flow are described in the context of
geographical and urban studies in P. Haggett and R. J. Chorley’s
compendious Network Analysis in Geography mentioned in Chapter 7,
which gives a broad and comprehensive treatment of topics which it is
possible only to touch on here.

We have seen how questions of the measurement of distance are impor-
tant for systematic design methods based on the criterion of circulation,
in particular for those of the additive type. If we should seem to have
concentrated on the difficulties which surround the additive approach,
then we might redress the balance perhaps by mentioning one problem
which is peculiar to the permutational method. This concerns the shape
and size of locations and the area required for activities.

We have made the over-simplification, in our worked examples, of
assuming a standard size for locations and activities, corresponding to
the area of one room in every case. This situation, of all rooms in a
building being required to be the same size, is rather a rare one in
practical planning, and more usually a schedule of accommodation
would, of course, contain a variety of required areas. Since with these
methods every activity must be capable of fitting any location, it is plain
that each room cannot now be represented as a single activity. The trick
is — with additive methods — simply to decide an areal module to which
the size of location is made to correspond, and then to divide the area of
each required room into the nearest equivalent round number of
modular ‘activity units’.

In Whitehead and Eldars’s case, for example, the chosen size for loca-
tions and activity units is 100 ft2 — although any convenient figure would
serve —and the areas of rooms in the operating theatre group are
approximated to some number of units, ranging from one unit for a
lobby or store room, to six units for the theatres themselves.

All that remains is to divide the association values calculated for the
room as a whole, by the number of activity units from which it is to be
made up, to produce the association values for each separate unit; and
to set the association between the units forming a single room to some
artificially high value, so as to ensure that they are all positioned together

10 As for example methods involving the ‘hierarchical decomposition’ of linkages (as used
in another architectural context by C. Alexander, Notes on the Synthesis of Form, Cam-
bridge, Mass., Harvard University Press, 1964); variants of the method of ‘clumps’
borrowed from linguistic analysis; or the taxonomic procedure of ‘non-metric multi-
dimensional scaling’ — all described, and some examples of their application to office
communication examples given in Tabor, Traffic in Buildings 3; Analysis of Communication
Patterns, Working Paper 19, University of Cambridge, Land Use and Built Form Studies,
1970.

in the layout in a compact group to correspond to the area required for
that room. The method then proceeds as before.

So, as we suggested when the notion of a ‘location’ in its special meaning
was introduced, the unit need not correspond to a room always, but
could be a work-space, a part of a room, or even a group of rooms
treated together. Equally it is not necessary nor generally feasible, for a
large problem, that an ‘activity’ should represent a single individual;
and a great deal of study has been given in this connection to the way in
which the structure of an organization might be analysed so as to find
those groups of people, or groups of functions, which could most
properly be treated as distinct units for the process of allocation. We
have touched the fringes of this subject with the classificatory graphs of
Chapter 12; some authors have borrowed the more advanced techniques
of automatic classification and mathematical taxonomy for a detailed
and rigorous treatment.1® But although the principles of some of these are
essentially geometrical, this is not the ‘geometry of environment’ but of
multi-dimensional ‘classification space’ and their discussion goes beyond
the scope of this book.

Now, although there are some small operational difficulties with addi-
tive methods in treating the shapes of rooms when they are composed of
several activity units each — since despite the high association set to keep
the units together, it may still be possible for the resulting shape of
room to become irregular or excessively elongated, and so require
subsequent tidying — nevertheless with permutational methods the
question of shape and size of rooms is altogether more serious. Here in
the nature of the exercise we must always exchange the position of pairs
of complete activities or complete activity groups; and if their area
requirements are unequal it does not help to split them into smaller
modular units of area, for this simply means then that we are trying to
exchange some set of units for a smaller or larger number —and one
group will not fit in the free locations left by the other.

Two adjacent rooms of unequal area can be swapped possibly; but then
their centroids move, and so the distance calculation will be thrown out
somewhat. The CRAFT programs make use of some ingenious stratagems
by which groups of rooms may be exchanged in stages, by ‘carving’
smaller rooms out of the area of larger ones, at their corners, and by
shuffling intermediate rooms along. But this is computationally very
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intricate, the resulting room shapes again tend towards the irregular,
and in the end the objection about the effect the process can have on the
calculation of distances also still stands.

Finally, we return to the original assumptions made about the nature of
journeys in a building, on the basis of which the association values were
fixed, and so by extension on which the foundation of all these methods
rests. Trips were assumed always to be made to their destination and
directly back again, with no round trips taken account of. The associa-
tion values are fixed, and no allowance is made for the quite probable
eventuality that over longer distances people will tend to make fewer
trips to those destinations which, if they were closer, they might visit
more often. In this light it might be reasonable to suggest that the
number of journeys made between a pair of activities over some fixed
period be assumed to be some inverse function of the distance by which
they are separated. But then the whole structure of the allocation
process collapses.

A more general criticism of all the methods described is that by
implication they assume (in particular the additive type) that the
disposition of rooms or spaces in a plan should be worked out according
to a very particular pattern of traffic, measured at one particular point

in time; and then that exact form of building constructed. (Although it is
true that permutational methods have been aimed rather at administra-
tive use, more than for architectural design, for obtaining the best
reorganization of functions within an existing envelope.) The building’s
structure may be designed to last fifty, a hundred years. But it is possible
that even within a few months the structure of the organization which
that building is to house will have changed, and correspondingly the
whole pattern of pedestrian traffic have altered. No allowance is made
for the flexibility of the plan to accept probable changes in the organi-
zation which the building accommodates, over the building’s lifetime.

It is perhaps no accident then that of all building types the hospital is
the one which occurs most frequently as an example for testing such
methods. For here not only must many trips be made irrespective of the
distances travelled ; but also the pattern of hospital routine is perhaps
more standardized and consistent than in other kinds of organization,

and so variations in the trip pattern over a period of time may be less
extreme.

11 Traffic in Buildings 4; Evaluation of Routes, pp. 227

Should architects be trying at all to prod}me Plans on the basis of these
types of very detailed calculation of pgrtlcular movement patterns in
buildings ? Should their attention be given rather to trying to measure
the capacity of broad zypes of building form to accommodate general
types of traffic pattern, at a much coarser level of analysis? Some rather
general questions for which it would be useful to be able to give answers
with numerical meaning to, are: what typical forms of building are
appropriate when the trips made by occupants are frequent, or in-
frequent ? Are there some classes of building form whose geometry
suits them better to some patterns of traffic than to others? And on the
other hand, is it possible at all to characterize different organizations
by the general types of traffic pattern to be found within them ?

Answers to the last question lie in the study of actual patterns of travel
in experimentally observed situations; which leads us off again frorr} our
main theme, into the areas of sociology and social psychology. But if we
are not to look here at typical patterns of communication in organiza-
tions, seen independently of architectural forms for their accommoda-
tion, what we can do is to take the other view, to look at architectural
forms independent of specific organizational patterns. This is one pur-
pose of the experiments by Tabor which we have already described. It is
quite clear from Figure 14.8 for example, how for the different type-
forms chosen, the more compact plans (the two-band slab and the two-
sided court) result in a greater average accessibility of one room to
another — quite independently of what trips might actually be made‘ by
some set of occupants of such buildings. Hence any particular adminis-
trative layout planned within these forms (using some permutational
method perhaps) would tend to start with an in-built cost advantage
over those (such as the court and slab of one-band depth) where mean
distances are greater.

How big an advantage this might be, would depend on the tr-ip patterns
of the particular occupant organization, and how efficiently 1t's act'xvmes
were located. If all the trips were short ones, if as Tabor puts it ‘trips
tend to have destinations only a few doors down the corridor’, then
‘distances to destinations in the rest of the building — whatever its

shape — matter little’. The general effects of architectural form in relation
to circulation patterns will be felt more where trips are generally longer;
and to demonstrate something of these effects Tabor has designed .
another experiment,!! the last we shall describe, which goes some way 1n
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the suggested direction, of depicting different patterns of trafficin a
broad statistical way, instead of with the detailed and peculiar descrip-
tions demanded by automatic planning methods.

Tabor takes the three type-forms, with which we are by now familiar:
the straight form, the cross and the court. There is no detailed room
plan here. They are represented simply by corridor skeletons, as it were;
and the total length in each form is the same. All three are single-level
plans.

These are buildings, therefore, with layout and circulation systems
represented at their most schematic. The patterns of traffic within the
forms are specified in equally general terms. The graph (Figure 14.17)
illustrates the trip lengths for each form, measured for what Tabor calls
different propensities for those making journeys to choose neighbouring
destinations. At one extreme all possible lengths of journey between all
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Guide to further reading

Throughout this book we have drawn the reader’s attention to specific
references which not only provide the sources of our statements but,
frequently, will already have suggested ways in which the subject may be
pursued further. The purpose of this section is to recommend the
reading which we have found stimulating in different ways and for a
variety of purposes. Many of the books we mention contain large and
full bibliographies in their particular areas of study, and these may lead
readers into the more specialized literature should they wish to explore
the subjects in greater depth.

In our Preface we tried to say what this book does not do. It does not

_ concern itself with the traditional uses of descriptive geometry in archi-

tectural drawing. There are many books on this subject, principally for
engineering graphics, but R. G. Robertson’s Descriptive Geometry
(London, Pitman, 1966) will be found to be both clear and readily
obtainable. Nor does our book dwell on the ‘energetic-synergetic
geometry’ developed by R. Buckminster Fuller which has charmed
recent generations of architectural students. This is adequately sum-
marized in Robert W. Marks’s The Dymaxion World of Buckminster
Fuller (Carbondale, Southern Illinois University Press, 1966), until such
time as Fuller’s forthcoming Synergetics is published. While this
‘comprehensive, mathematical, rational coordinate system’ may have
some relevance at the atomic level —and one or two scientists have
supported this view — it is less clear why geometrical figures which
exhibit ‘omni-directional equilibrium of forces’ should be important at
the architectural scale where the uni-directional force of gravity
dictates structural form. The complicated distribution of forces in
lattice frames, geodesic and other dome-like structures that gravity gives
rise to are well illustrated in Z. S. Makowski’s book Steel Space
Structures (London, Michael Joseph, 1965). The change of scale from
atomic to engineering structures is discussed in D’Arcy Thompson’s
classic work On Growth and Form (Cambridge University Press, 1961),
in a chapter ‘On Magnitude’. This is certainly a work that should be
looked at. As P. B. Medawar has said, D’Arcy Thompson believed ‘not
merely that the physical sciences and mathematics offer us the only
pathway that leads to an understanding of animate nature, but also
that the true beauty of nature will be revealed only when that under-
standing has been achieved . . . D’Arcy did away for all time with this
Gothick nonsense: a clear bright light shines about the pages of Growth
and Form, a most resolute determination to unmake mysteries’.

Unfortunately, any attempt to understand human nature and the
processes of creative design may well be smothered by the Gothick
mysteries which enveil the subject. This is exemplified by the literature
on aesthetic measures and proportional systems, by what the Italian
philosopher, Benedetto Croce, once called the ‘astrology of number’.
Typical examples of this mystification are Matila Ghyka’s influential
Geometrical Composition and Design (London, Tiranti, 1956), and a
book by M. Borissavlievitch entitled The Golden Number and the
Scientific Aesthetics of Architecture (London, Tiranti, 1958). An excel-
lent refutation of this nonsense is to be found in Christopher Alexander’s
paper ‘Perception and Modular Coordination’ (RIBA Journal, October
1959, pp. 425-9). We have avoided overt aesthetic discussion in this
book, and we hope that the chapters which do refer to proportional
systems help to demystify the subject.

These then — the graphic, structural and aesthetic — are aspects of
geometry and environment which our book is not about. Nor have

we reviewed geometrical applications at the urban or regional scale.

A stimulating series of essays, Explorations into Urban Structure (Phila-
delphia, University of Pennsylvania Press, 1964), edited by Melvin
Webber, is a good start if only because Webber’s own provocative
essay questions the utility of geometrical concepts at this scale in an age
of rapid transportation and near-instant communication. However, a
recent book by Richard L. Morrill, The Spatial Organization of Society
(Belmont, California, Wadsworth, 1970), covers the subject at the
geographic scale very well indeed. Another book, Leslie J. King’s
Statistical Analysis in Geography (Englewood Cliffs, Prentice-Hall,
1969), is a first-class introduction to spatial distributions of a probabil-
istic nature among other related topics. A standard text on geometrical
probability, with that title (Geometrical Probability, London, Charles
Griffin, 1963), is by M. G. Kendall and P. A. P. Moran. Readers with a
good background in mathematics may wish to follow developments in
this area in the journal Biometrika.

We certainly recommend some of Christopher Alexander’s essays. We
have already advertised his Notes on the Synthesis of Form (Cambridge,
Mass., Harvard University Press, 1964) as complementary to our own
preoccupation with geometrical and mathematical formalism. But
Alexander’s later works should not be missed either : for example,

‘A City is not a Tree’, which appeared in Architectural Forum (vol. 122,
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no. 1, pp. 58-62; and no. 2, pp. 58-61, 1965), ‘The Pattern of Streets’
(J. American Institute of Planners, vol. 12, no. 5, 1966, pp. 273-8) and
The Atoms of Environmental Structure, a Research and Development
Paper written with B. Poyner and published by the Ministry of Public
Building and Works, London, 1967.

In other subjects than architecture the ‘quantitative revolution’, as it
has been called, is well-advanced. Richard Stone’s essay “Mathematics
in the Social Sciences’ (in: Mathematics in the Social Sciences and Other
Essays, London, Chapman and Hall, 1966) is well worth reading for its
uncommonly good sense. Stone is, perhaps, best known for his work in
modelling the British economy: for deriving a system of mathematical
expressions to simulate its ups and downs in past years. In geography,
Chorley and Haggett have edited the Second Madingley Lectures
(Models in Geography, London, Methuen, 1967) which describe the uses
of mathematical models in a wide range of applications. Peter Haggett’s
own book, Locational Analysis in Human Geography (London, Methuen,
1965), provides a very catholic introduction to new techniques in this
field, while Network Analysis in Geography (London, Edward Arnold,
1969), written with Richard Chorley, extends the subject matter more
widely. In Analytical Archaeology (London, Methuen, 1968), David L.
Clarke has reviewed comprehensively the recent impact of mathematics
and computing methods on his field. It is tempting to substitute the
word ‘architecture’ for archaeology in his opening remarks: ‘Archaeo-
logy is an undisciplined empirical discipline. A discipline lacking

a scheme of systematic and ordered study based upon declared and
clearly defined models and rules of procedure. It further lacks

a body of central theory capable of synthesizing the general

regularities within its data in such a way that the unique residuals
distinguishing each particular case might be quickly isolated and easily
assessed. . . . Lacking an explicit theory defining entities and their
relationships and transformations in a viable form, archaeology has
remained an intuitive skill — an inexplicit manipulative dexterity learned
by rote.’

It is now a decade ago since Edmund Leach, in Rethinking Anthropology
(London, The Athlone Press, 1961), introduced us to the structuralist
approach with this question: ‘How can a modern anthropologist
embark upon generalization with any hope of arriving at a satisfactory
conclusion? And his italicized answer: ‘By thinking of the organiza-

tional ideas that are present in any society as a mathematical pattern.’

A stance qualified by James S. Coleman in his Introduction to Math-
ematical Sociology (New York, Free Press of Glencoe, 1964): “This
does not mean that mathematical methods developed for other sciences
or as exercises in pure mathematics are not of use; to be sure, they are
the only sources of mathematics that we have. It is rather to say that the
necessarily difficult task of developing mathematical sociology can best
be performed when our concentration remains upon the sociological
problem, and the mathematical tools remain means to an end.” Which is,
of course, as true of architecture as any other social science — or ought
to be. On the ‘uses’ of pure mathematics and the nature of mathematical
patterns, the reader is invited to look at G. H. Hardy’s delightful 4
Mathematician’s Apology (Cambridge University Press, 1967).

Apart from the areas we have mentioned, the application of mathe-
matics in architectural design is just beginning. Our own impetus in this
direction has gained momentum from parallel work by our colleagues

at the centre for Land Use and Built Form Studies, Cambridge. This
work is usually published in the form of Working Papers which are
available from the RIBA Bookshop, 66 Portland Place, London WIN 4AD.
However, several substantial contributions are appearing in a new series,
Cambridge Urban and Architectural Studies, Cambridge University Press.
Some papers which make use of simple geometrical illustrations to
challenge habitual assumptions concerning such things as high buildings,
green belts, densities, and ribbon developments appear in Urban Space
and Structures (L. Martin and L. March, eds., 1972), the first volume

in this series. A second volume, The Architecture of Form (L. March, ed.)
contains several papers which set the discussions of geometrical des-
cription of built forms in the present book, in the context of the design
process as a whole. A special number of Architectural Design, May

1971, provides a conspectus of the centre’s work on modelling, in the
mathematical sense, the built environment and the activity systems

which this accommodates.

Before turning to readings associated with specific chapters in this book,
it may be useful to mention some introductory books on architecture
for the non-architect and some elementary books on mathematics for
the non-mathematician.
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In general, we recommend the series of monographs published by
George Braziller. The authors include Francoise Choay on Le Corbusier,
Vincent Scully, Jr on Frank Lloyd Wright, Arthur Drexler on Mies van
der Rohe and Frederick Gutheim on Alvar Aalto (all published in 1960).
These volumes contain bibliographies which will help the reader follow
up any particular interest. To Englishmen, the standard history of
twentieth-century architecture is Nikolaus Pevsner’s Pioneers of Modern
Design, from William Morris to Walter Gropius (Harmondsworth,
Penguin Books, 1970). An account which gives less emphasis to the
English and more to the American contribution is Sigfried Giedion’s
Space, Time and Architecture (5th ed., Cambridge, Mass., Harvard
University Press, 1967). Reyner Banham’s Theory and Design in the
First Machine Age (London, Architectural Press, 1960) provides a
worthwhile guided tour round the Tower of Babel of architectural
theories voiced in the first half of this century.

There are many books on the new mathematics now available. Qur
choice is bound to be arbitrary. In Britain the new mathematics has been
fostered at primary school level by the Nuffield Mathematics Project
which aims to change the whole attitude to the subject so that ¢ “Ugh,
no, I didn’t like maths”, will be heard no more’. There is one Nuffield
publication for young children which we ought to mention because of
its name. The book is called Environmental Geometry (London, W. & R.
Chambers and John Murray, 1969) and it includes such themes as shape
and size constancy, and routes and directions. The numerous architec-
tural examples are due in part to George Kasabov and a number of his
first-year students at the Bartlett School of Architecture in London. It is
an extremely attractive presentation which makes us feel optimistic for
the long-term future of environmental understanding and design. In a
growing number of primary schools, reception-class children now start
their mathematical training with sets, while, in the experience of one of
the authors, his daughter at six years’ old found few difficulties in
adding and multiplying matrices together as a game.

At the secondary level of mathematics, there are first-class text books
related to the School Mathematics Project (Cambridge University Press)
which was founded in 1961 to devise radically new mathematics courses
which would reflect the up-to-date nature and usages of mathematics.

In particular, Book 5 for O-level candidates, covers with admirable
clarity and simplicity of presentation, together with numerous examples,

many of the topics dealt with in the present book such as sets, relations,
mappings, transformations, vectors and matrices, isometries and the
uses of matrices to give algebraic expression to symmetry operations,

as well as graphs and networks. The almost constant use of architectural
or quasi-architectural problems for the sake of illustration is again quite
striking. One chapter is called ‘Plans and Elevations’, another is in part
devoted to problems of ‘Heating a House’, while a section on linear
programming sets out the basic steps in the construction of mathema-
tical models for a variety of practical planning problems. The four
Advanced Mathematics books in this project continue the discussion of
these topics up to A-level standard.

A very attractive introduction to the new thinking is Mathematical
Reflections (Cambridge University Press, 1970), edited by members

of the Association of Teachers of Mathematics. Of special interest to
readers of the present book will be the essays on tesselations of poly-
ominoes, the concept of mapping, transformation geometry, group
calculus for geometry, enlargements, a chapter entitled ‘Drawings and
Representations’, and a sparkling duologue by A. P. K. Cadwell called

¢ “I thought you were going to tell me about automorphisms.”* The
latter concludes with the following statement on aesthetics and math-
ematics: ‘We move from one space to another by making maps mapping
one space into another. An artist maps from domains of ideas and
emotions into ranges of experience using the patterns of his experience
which he has mapped into his own mental and emotional spaces. It is his
choice and use of a particular range of experience in which to express
himself that is the aesthetic praxis. In the most general sense every
theory is mathematical. I am trying to sketch a theory of aesthetics for
you. . .. And whether you like a piece of mathematics or not is a matter
of aesthetics.’

The New Mathematics by Irving Adler (New York, John Day Company,
1959), now available in paperback (London, New English Library,
1964), is addressed to the average reader who is curious about new
developments in mathematics. It covers similar ground to our first four
chapters and is well worth reading. A new book, Ideas in Mathematics
by Avron Douglis (Philadelphia, W. B. Saunders, 1970) intentionally
aims to convey the humane values of mathematics to non-mathematical
students. It is a beautifully presented book for liberal arts students in
which the earliest sections of each chapter and the beginning of almost
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every section have been designed to introduce their subjects gently for
the benefit of ‘the diffident or ill-prepared’. An Introduction to Finite
Mathematics by J. G. Kemeny, J. L. Snell and G. L. Thompson (Engle-
wood Cliffs, Prentice-Hall, 1957) provides a simple and clear account of
matrices and vectors, among other subjects, with many interesting
illustrations from the social sciences.

We would recommend the literature of ‘recreational mathematics’ where
abstract mathematics often finds unexpected application. J. H. Cadwell
in Topics in Recreational Mathematics (Cambridge University Press,
1966) does not only discuss the symmetry groups in a plane but he also
looks at problems of stacking, nesting and space-filling, the Fibonacci
sequence, the four-colour problem, procedures for dissecting plane and
solid figures so that pieces may be reassembled to form other simple
shapes, and some theorems related to combinatorial geometry.

Martin Gardner’s regular column ‘Mathematical Games’ in the magazine
Scientific Americanis always stimulating. Two anthologies compiled from
that column are now available in paperback editions: Mathematical
Puzzles and Diversions, London, Penguin, 1965, and More Mathematical
Puzzles and Diversions, London, Penguin, 1965, which contain, as well
as the chapter on ‘Squaring the Square’ by W. Tutte discussed in

our Chapter 11, other sections devoted to ‘Phi; the Golden Ratio’ and
some combinatorial problems in stacking cubelets — the so-called Soma
Cube. For an absorbing example of combinatorial geometry in two and
three dimensions of an architectural and modular kind, the reader may
wish to glance at S. W. Golomb’s Polyominoes (London, Allen and
Unwin, 1966). ‘Polyominoes’ is a special coinage to denote dominoes
consisting of more than two squares joined along their edges. Finally,
one of the best general introductions to modern geometry is without
doubt by H. S. M. Coxeter (Introduction to Geometry, New York,

Wiley, 1961). We heartily recommend his treatment of the subject.

Chapters 1to 3

Many of the relevant mathematical and architectural books for these
chapters have already been discussed above. The most outstanding
general essay on symmetry is by Hermann Weyl (Symmetry, Princeton
University Press, 1952). This is essential reading for anyone interested
in the subject. Weyl discusses a great variety of applications of the
principle of symmetry in the arts, in ‘inorganic’ and organic nature, and
the mathematical significance of symmetry. The Hungarian mathema-
tician, Fejes Toth (Regular Figures, Oxford, Pergamon Press, 1964), has
produced a most comprehensive and well-illustrated account of regular
figures, symmetry groups, and tesselations as well as numerous packing
and covering problems. Both Weyl and Téth reproduce plates from the
great nineteenth-century collection of ornaments by the architect Owen
Jones (The Grammar of Ornament, London, Day and Son, 1856). This
classic work may be difficult to obtain, but once in the hand any effort
expended in finding it will quickly be forgotten. Egyptian Ornament
(London, Allan Wingate, 1963) contains over three hundred examples
in full colour from the collection of Pavla Fortova-Samalova and
displays the wonderful geometric imagination and inventiveness of
their creators some three to four thousand years ago. An extraordinary
catalogue, by Daniel Sheets Dye (4 Grammar of Chinese Lattice,
Cambridge, Mass., Harvard University Press, 1949) of windows and
grilles constructed by Chinese workmen between 1000 Bc and Ap 1900
presents many other variations on the frieze and wallpaper groups.
Many of these Chinese examples are reminiscent of the complicated
lattice designs found in original Tudor lead glazing and ribbed ceilings
sampled in The Domestic Architecture of England during the Tudor
Period (London, Batsford, 1929) by Thomas Garner and Arthur
Stratton.

The general notion of mapping and transformation is, of course, funda-
mental to geography. We have found applications and discussions in
that field to be stimulating in our own work. Mention must be made of
William Bunge’s Theoretical Geography (Lund, C. W. K. Gleerup, 1966)
and particularly his chapters on metacartography, on distance, nearness
and geometry, and on the meaning of spatial relationships. J. P. Cole
and C. A. M. King’s Quantitative Geography (London, Wiley, 1968) is
less philosophical and more practical, but its great merit lies in its
numerous worked examples, and the large number of maps and
diagrams which will commend the book to those who find visual presen-
tation easy to follow. The chapter “Mathematics’ provides a quick
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summary of the relevance of new mathematics in geography. It covers
much of the same material as in the present book, but naturally takes
most of its illustrations from applications to spatial organization at a
larger scale than the architectural. Their chapter concludes with a good
bibliographical section on books about the new mathematics.

Two paperbacks, A. E. Coulson’s An Introduction to Vectors and An
Introduction to Matrices (London, Longman, 1969) provide very lucid
accounts of their topics and are well worth obtaining. Our approach to
the description of shape, particularly rectangular configurations, was
suggested by exercises in James F. Gray’s Sets, Relations and Functions
(New York, Holt, Rinehart and Winston, 1962). The notation in
Chapter 6 is meant to be suggestive only and will not be found else-
where. But, the concepts of ‘interval’ and ‘vector’ are well estab-
lished in mathematics, and the idea of combining them would seem
natural enough. What is not yet clear is whether useful and powerful
theorems can be derived using this particular formalism. The ideas are
further developed in a paper by Lionel March (4 Boolean Description
of a Class of Built Forms, Working Paper 1, University of Cambridge,
Land Use and Built Form Studies, 1973), which also appears as a
chapter in The Architecture of Form mentioned above. The chapter

on irregular polygons here was prompted originally by investigations
into the shapes of plots of land and building sites in urban areas. The
2 x n matrix representation of an n-gon was suggested by Michael
Trace who, with March, derived the u, v formula for its area.

L. A. Lyusternik’s Convex Figures and Polyhedra (New Y ork, Dover,
1963) is available in paperback and is a fascinating introduction to the
subject of convexity which, as the author remarks, ‘offers gratifying
material for the popularization of mathematics among younger
students’. Another Soviet classic in this field, and available in English, is
Convex Figures by I. M. Yaglom and V. G. Boltyanski (New York, Holt,
Rinehart and Winston, 1961). We also recommend Euclidean Geometry
and Convexity by Russell V. Benson (New York, McGraw-Hill, 1966).
On the whole these three books are at undergraduate level.

Chapter 8

Bruce Martin’s book The Co-ordination of Dimensions for Building
(London, Royal Institute of British Architects, 1965) gives a short
history of the subject of modular coordination, a brief and clear account
of the theory, and an exhaustive bibliography, historically arranged,
including articles and books published between 1936 and 1965. The first
entry in this bibliography is, appropriately, the third volume of A. F.
Bemis’s The Evolving House, subtitled ‘Rational Design’ (Cambridge,
Mass., Technology Press, M.I.T., 1936). Of the three volumes it is this
one which contains the most interesting and important sections, on
modular coordination and rationalization of housing design.

Some recent books and publications which cover the more theoretical
and mathematical, as opposed to practical and technical aspects of the
subject, include Ezra Ehrenkrantz’s The M odular Number Pattern
(London, Tiranti, 1956), which describes work carried out at the
Building Research Station (a kit for the construction of a three-dimen-
sional clear plastic model of the ‘number pattern’ of the title is included
with the book): the reports of the European Productivity Agency
Project (First and second reports, Paris OEEC, 1956 and 1961, respec-
tively); and the ‘Modular Primer’ by E. Corker and A. Diprose which
was published as a supplement to the M odular Quarterly (no. 1, 1963), the
journal of the Modular Society, devoted to the discussion and promotion
of modular design.

As an introduction to the principal ideas of number theory we could not
do better than to recommend Tobias Dantzig’s classic Number; the
Language of Science (4th edition, London, Allen and Unwin, 1968)
which is a fascinating and entertaining account of the historical develop-
ment of the concept of number, which Dantzig describes as ‘A Critical
Survey Written for the Cultured Non-Mathematician’.

The main work on the application of the theory of numbers to problems
of combinations of dimensions in building is a very different kind of
book. This is P. H. Dunstone’s single-minded, almost obsessional
working out and presentation in tabular form of many hundreds of
combinatorial possibilities for groups of two or three sizes (Combina-
tions of Numbers in Building, London, Estates Gazette, 1965). Like The
Modular Number Pattern there is a ‘do-it-yourself” kit provided with

the book, consisting of tables and ‘combigraphs’. The basic theory of
these effectively Diophantine problems is outlined by Dunstone, while
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formulations of some expressions relating critical numbers and numbers
of combinations are given by J. H. Clarke in a paper ‘Linear Diophan-
tine Equations Applied to Modular Co-ordination’ (Australian Journal
of Applied Science, vol. 15, no. 4, 1964, pp. 345-8).

The literature of architectural systems of proportion is enormous, and
we do not intend to do any more here than to select one or two of the
most important contributions to the subject. We have warned earlier of
the dangers of numerological brain fever, with which some authors
might infect the unwary reader, and prescribed Christopher Alexander’s
refreshing paper (‘Perception and Modular Coordination’, RIBA
Journal, October 1959, pp. 425-9) as an antidote. Rudolf Wittkower’s
‘The Changing Concept of Proportion’ (Daedalus, 1960, pp. 199-215)

is another such tonic; and certainly Wittkower’s masterly and influential
study of Renaissance systems of proportion and their significance in
relation to musical theory and philosophical thought, Architectural
Principles in the Age of Humanism (London, Tiranti, 1962) should not
be missed out.

Perhaps even more influential on a modern generation of architects has
been Le Corbusier’s The Modulor (London, Faber & Faber, 1954) and
its sequel Modulor 2 (Boulogne sur Seine, Editions de L’ Architecture
D’Aujourd’hui, 1956). These volumes tell, in Le Corbusier’s inimitable
style, the story of how the Modulor system was invented and applied,
what the world thought of it, how its dimensions cropped up in un-
expected places, and much more. The most comprehensive and level-
headed treatment of the whole history of proportions in architecture,
from Classical and Renaissance to nineteenth-century and modern
examples is P. H. Scholfield, The Theory of Proportion in Architecture
(Cambridge University Press, 1958). This has a mathematical appendix
and a full bibliography.

‘The number of books on graph theory is very small,” says Oystein Ore,
whose own little book Graphs and Their Uses (New York, Random
House, 1963) is the best short introduction to the subject. Since it is said
that the beginnings of graph theory came from Euler’s discussion of the
Konigsberg bridge problem, it is an odd coincidence that two of the
major books on graph theory should be by the German author D. Konig
and the Frenchman Claude Berge. Of these two, Berge’s book Théorie
des Graphes et ses Applications, is available in English translation (The

Theory of Graphs and its Applications, London, Methuen, 1962) and
covers the whole subject very fully. The reader is warned that there is
some variation in terminology between authors, and in particular that
Ore uses ‘arc’ to mean a special form of what is in Berge’s terms a
‘chain’. The terms ‘circuit’ and ‘path’ are also used somewhat differently
by Ore (who provides a glossary of definitions). And other authors use
‘node’ and ‘link’ for ‘vertex’ and ‘edge’. We have chosen to follow Berge
for terminology throughout.

Two other books which are strongly recommended, since besides giving
theoretical treatment they both illustrate a large variety of applications
of graph theory, are Harary, Norman and Cartwright’s Structural
Models (New York, Wiley, 1965)—which the authors describe as an
introduction to the use of mathematical models in the social sciences—
and R. G. Busacker and T. L. Saaty, Finite Graphs and Networks, an
Introduction with Applications (New York, McGraw-Hill, 1965). The
latter covers applications in human science, computing science, opera-
tions research, various combinatorial problems, and in the solution and
study of puzzles and games.

Three papers cover specifically the use of planar graphs in problems of
architectural plan layout. These are P. H. Levin’s “The Use of Graphs
to Decide the Optimum Layout of Buildings’ (The Architects’ Journal,
7 October, 1964, pp. 809-15) which describes a ‘pencil and paper’
method ; ‘Computer-Aided Plant Layout’ by M. Krejcirik (Computer-
Aided Design, Autumn 1969, pp. 7-19); and an article in the Canadian
magazine Habitat (vol. 12, no. 2, 1969, pp. 13-18) by Jean Cousin
entitled ‘Architecture et Topologie’ which has been republished in
English translation in Architectural Design (“Topological Organization
of Architectural Space’, pp. 491-3) in October 1970.

Chapter 11 follows closely the argument of a recent paper by Steadman
(The Automatic Generation of Minimum-Standard House Plans, Working
Paper 23, University of Cambridge, Land Use and Built Form Studies,
1970). Since the main text of this chapter was written our attention has
been drawn to the work at Carnegie-Mellon University in Pittsburgh of
John Grason, who has taken an extraordinarily similar approach but has
pursued it much further and has produced a series of computer programs
which achieve substantially the aims for an automatic layout system
which are only tentatively outlined here. Grason’s work has so far only
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been published in the USA in working papers and in a doctoral thesis
‘Methods for the Computer-Implemented Solution of a Class of “Floor
Plan” Design Problems’ (submitted 1970) which describes his method at
considerable length (xerox copies available on demand from University
Microfilms, Ann Arbor, Michigan, USA). But his work in this area pre-
dates the publication of Steadman’s paper, and the thesis offers a com-
plete demonstration and confirmation of the potential of the approach,
some aspects only of which we have proposed independently here. The
account of the discoveries made by the ‘Important Members’ in the
process of their successful attempt at ‘squaring the square’, given by

W. Tutte in Martin Gardner’s second puzzle book, has already been
mentioned.

The constraincs imposed on the rectangular plan perimeter and on the
minimum dimensions and proportions of rooms in the hypothetical
house planning examples of Chapter 11, may be compared with the
recommendations made in actual practice for dimensional standards in
public authority housing in a number of official British government and
government agency publications. These include the report of the Parker
Morris Committee on housing, made in 1961 (Ministry of Housing and
Local Government, Homes for Today and Tomorrow, London, HMSO,
1961), the National Building Agency’s Generic Plans and Metric House
Shells (London, National Building Agency, 1969 and 1968, respectively),
and the former Ministry of Housing and Local Government’s Space

in the Home (London, HMSO, 1969).

Much of the substance of our last three chapters, 12 to 14, —in particular
the account given of various experiments in Chapter 14 —is drawn from
the work of our colleague, Philip Tabor, at the centre for Land Use and
Built Form Studies, Cambridge. His series of papers published by the
centre under the general title of “Trafficin Buildings’, and referred to
repeatedly in our main text already, cover ‘Systematic Activity-Loca-
tion’, ‘Analysis of Communication Patterns’ and ‘Evaluation of Routes’
(Working Papers 18-20, University of Cambridge, Land Use and Built
Form Studies, 1970). A review paper ‘Pedestrian Circulation’ (Working
Paper 17, 1970) which covers the whole subject at a more general level,
is in turn based partly on our Chapters 12 and 13 here, in what must
almost by now amount to a case of bibliographical incest. The
substantial argument of Tabor’s papers will be found in two chapters

of The Architecture of Form (L. March ed., Cambridge University
Press, 1974).

Apart from this, the literature of systematic design procedures based on
circulation criteria consists mainly of technical papers scattered through
a wide variety of specialized journals, or else is to be found in doctoral
theses; and has not otherwise been collected together in more accessible
form. We have given references to a number of the most important
papers in the main text, but we would recommend again two papers
specially, as representing the first and most basic statements of the
‘permutational’ and ‘additive’ methods respectively. These are Armour
and Buffa’s original paper published in Management Science (vol. 9,
no. 2, 1963, pp. 294-309), and the paper of Whitehead and Eldars in
The Architects’ Journal (17 June 1964, pp. 1373-80).

One exception to these general remarks about research papers is Souder,
Clark, Elkind and Brown’s substantial book on hospital planning
(Planning for Hospitals, Chicago, American Hospital Association, 1964)
which, though perhaps it has not had a wide circulation outside the
USA, does describe a very complete planning system with elaborate
computer aids, including the use of computer generated graphic displays.
An interesting simulation model of the frequency of pedestrian trips is
proposed, plans may be laid out on the cathode ray screen using a light-
pen and trips routed through these plans, and the operation of lift
systems is simulated, as we have mentioned in Chapter 14. More
generally, Britton Harris has used some of the systematic ‘activity-
location’ procedures described in Chapter 13 to illustrate some broad
points about the design and planning processes, in a stimulating essay
published in Architectural Design (June 1970, pp. 315-6: ‘One case of
computer optimization related to design method’).

P. Haggett and R. J. Chorley’s Network Analysis in Geography, referred
to above, is an excellent review of many topological and geometric
network problems, and covers in detail the questions of shortest paths
and network structure which we touch on in Chapter 14. This book, too,
contains a lengthy bibliography which will lead the interested reader

on into the related geographical and operations research literature.
Especially recommended in the geographical context are William
Garrison’s paper on the ‘Connectivity of the Interstate Highway
System’ (Papers and Proceedings of the Regional Science Association,
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vol. 6, 1960, pp. 121-37) and K. J. Kansky’s book Structure of Trans-
portation Networks (University of Chicago, Department of Geography
Research Paper no. 84, 1963), both of which use graph theoretical
measures to express various properties and characteristics of actual
transport network systems. The basic graph theory textbooks mentioned
previously in relation to Chapters 10 and 11 cover network and shortest
path problems. The concept of ‘distance’ at the geographical scale is the
subject of an excellent review and bibliography by Gunnar Olsson
(Distance and Human Interaction, a Review and Bibliography, Phila-
delphia, Regional Science Association, 1965).
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n-dimensional column vector
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modular component
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block ABC

dimension, or length, of component 4
centre of mass, or centroid, of component A

Graphs

set of vertices

typical vertex

graph which is a mapping, g, of a set of vertices X into itself
subset of vertices X associated with vertex x
edge

arc

chain

path

cycle

circuit

Kuratowski sub-graph with 5 vertices
Kuratowski sub-graph with 6 vertices

42,

90

91

94
108
117
188
109
105
101
101
104
103
150
150
117
186
184

124
128
129
145
151
168
127
127

263
263
263
263
265
263
266
266
266
266
256
256
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A sizes, 227-9, 228
Aalto, Alvar, 340
— MIT dormitory, 180, 181
Abel, N.H., 45
Abelian group, 45, 92, 93, 107, 113
Absolute value
— of length of vector, 106
— of quantity, 19
Abstract definition
— of symmetry group, 51
‘Activity’, 286fT.
‘Activity unit’, 330
‘Additive’ methods of layout, 303,
310fF., 312, 320
Adjacency
— requirements, 248, 274, 276-9,
284, 285
— of rooms, 247ff.
Adler, Irving, 341
Affinities, 22, 25
— in dilations, enlargements, 115
— in shadow projection, 24, 198
Airline distance, 131, 189
Alberti, Leone Battista, 58, 225, 226
Alexander, Christopher, 9, 237-8,
337, 338, 346
Alias transformation, 108, 182, 184,
186
Alibi
— improper, 187
— translation, 108
Alphabets, 27
Amiens cathedral, 138-9, 139
Anthropometric factors, 202, 203,
204,213
Arc
— in graph, 2634, 280
— incident into, out from vertex,
264
— infinite, 270
— in network, 268, 270ff.
Armour, G.C., 305, 309, 349
Association
— graph, 292, 295
— of rooms, activities, 285ff., 332
— survey to determine, 289
— table, 292, 301, 309
Associative property
— of field, 91
— of group, 44
Automorphism, 37
Axioms of group, 44
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Numbers in italic indicate pages
on which figures fall.

Bands, intersection of, 151, 151, 171

Band-planning, 154-6, 154-5, 156,
217

Banham, Reyner, 340

Barycentric coordinates, 115

Basic module, 201ff.

— grid, 206, 206, 208, 222, 223

Beaumont, M. J. S., 306, 316, 316

Beaux Arts symmetry, 35

Bemis, Albert Farwell, 122, 136,
137, 199-200, 200, 207, 345

Bemis set, 201, 204

Benson, R. V., 344

Berge, C., 346-7

Bernal, J. D., 40

Block]s], 168

— circular neighbourhood of, 165

— of cubelets, 140-1

— in extrusion, 173

— faces, edges, vertices of, 173, 174,
175

— identity, equality, equivalence of,
171-2,172

— nesting, stacking, fitting of, 173

— to represent component,
opening, 168-9

— translation of, 172

— union, intersection of, 173

Blue series of Modulor, 234-7

Blum, H., 194

Boots, army surplus, 47

— 4-D boxes for, 176

Borissavlievitch, M., 337

Boustrophedon, 181

Bow-tie

— area of, 188

— convex cover of, 195-6

Brooks, R. L., 272-3,274

Buffa, E. S., 305, 309, 349

Building matrix, 200, 200, 207, 207

Building Research Station, 213

Bullock, N., Dickens, P. and
Steadman, P., 154

Bunge, William, 122, 191-2, 343

Busacker, R. G. and Saaty, T. L.,
347

Bussat, Pierre, 202, 203

Cadwell, A. P. K., 341
Cadwell, J. H., 56, 342
Carathéodory’s theorem, 123, 195

Cartesian product, 149ff., 156,
205-6

— in three dimensions, 168ff., 206

Cascade algorithm, 329

Cathode ray )

— raster, 179

— screen, 155, 156

Centre of perspective, 23

Centre of rotation, 45

Centroid of n-gon, 189, 192

Chain

— of edges, 252, 261, 266, 293, 324

— of vectors, 183

Choisy, Auguste, 226

Chorley, Richard J., 191, 192, 193,
330, 338, 349

Chromosomes, 194

Churchman, C. W., Ackoff, R. L.
and Arnoff, E. L., 196

Cinar, U., 290

Circuit, 266, 293

Circular neighbourhood, 164-5, 194

Circularity ratio, 193

Circulation

— problems, 286, 289, 303ff.

— system as tree, 288, 323

Clarke, David L., 338

Clarke, J. H., 346

Classification

— automatic, 331

— space, 331

Classificatory graph, 299

Clock arithmetic, 19, 52

Closure

— under addition, 92, 2045

— in field, 91

— in group, 44

Cole, J. P. and King, C. A. M., 343

Coleman, James S., 339

Column vector, 88

Combinations

— of dimensions, 215-21

— theory of, 221

Combinatorial problems in layout,
303-5

Common factors, 219

Common multiples, 211

Communication, graph of, 297-8

Commutativity

— in field, 91

— in group, 45

Compactness measures, 192, 193
Complement, of set, 125, 130
Component[s]
— centre of mass of, 127
— conjunction of, 146, 147
— disjunction of, 146, 147
— equality of, 145
— filling interval, 145ff.
— free, 146, 151
— of graph, 293, 296
— identity of, 145
— industrial manufacture of, 212,
215-16
— length of, 127, 145
— made up of units, quadrats, 127,
120fT.
— overlapping of, 146, 147
— packing of, 148
— product of, 151, 168
— sizes, 212-13,215-16
— stacking, nesting, fitting of, 146,
147,149, 150
Composition
— in field, 91
— in group, 44
Computer, 304-5
— image of shape, 179
— shortest path algorithms, 329
Computer-aided design
— in band-planning, 155-6, 156
— description of spaces for, 148
— distance measures in, 166
— in house-planning, 274, 284
— matrix operations in, 115
Condolle, A. P. de, 36, 38
Conductance, 271
Cone of vectors, 157, 175
Conformability of matrices, 96, 98
Conjoint
— of blocks, 173,173
— of panels, 153, 153,159
Conjunction
— of components, 146, 147
— matrix, 149-50, 153
— of panels, 152-3, 153, 159,
160, 161
— of rooms, 158,159
‘Constructive’ methods of layout,
303

) Constructivists, 40

Contraction of graph, 251
Convex

— cover, 195

— hull, 157, 175

— set of points, 171, 194, 198
Convexity

— in architectural problems, 198
— in linear programming, 196-7
— of n-gon, 190, 194-8

— problems of, 121, 171, 194-8
Cook, Captain, 29

COPLANNER system, 321
‘Corbusier set’, 235

Corker, E. and Diprose, A., 345
Cortex, mappings in, 26, 26

Cosines, law of, 109

Cost,

— of circulation, 286, 289-90, 302
— table, 301

Coulson, A. E., 344

Cousin, J., 347

Cover, 195

— convex, 195

Coxeter, H. S. M., 342

CRAFT programs, 305, 331

Crick, Francis, 29

Critchlow, Keith, 121

Critical dimension, 219, 221
Critical number, 218, 219, 220, 221
Croce, Benedetto, 337
Cross-ratio, 23

Crystal Palace, 139, 199

Crystal symmetry, 42
Crystallography, 36, 136
Crystallographic restriction, 64, 65
Cubelet[s], 123, 136, 137, 140, 200
— matrix of, 200

— union of, 140

Cupboard units, 215-17, 216
Cutting of sheet materials, 159
Cycle of edges, 245, 255, 266, 324
Cyclic symmetry groups, 56, 57
Cyrillic notation, 27

Dantzig, Tobias, 345

Decomposition of organizational
structure, 300

Descriptive geometry, 25-6, 36

De Stijl, 40

Detective, six foot, 202, 235

Determinant of matrix, 1045

Digraph, 264

Dihedral point groups, 50-2, 56, 57

— in architectural plans, 58, 59,
60, 62

Dilation, 112, 114-15, 116, 117, 186

Dimension

— critical, 219

— of vector, 90

Diophantine problems, puzzles,
217-21

Diophantos, 217

Directed graph, 264

Disjoint sets, 125

Dissection problems, 161

Distance

— airline, 131, 318, 319

— between locations, 318

— between rooms, 166

— between sets of points, 164

— in layout problems, 330

— measures in computer-aided
design, 166

— real, 318-20

— rectangular, 131, 318, 319, 320

— table, 287-9, 301, 309

Distributive property of field, 92

DNA, 29

Douglis, Avron, 341

Dual graph, 2534, 275

Dunstone, P. H., 221, 345

Durand, J. N. L., 35, 35, 36, 38, 137
Dye, Daniel Sheets, 343

‘Dynamic proportion’, 238

Ecole Polytechnique, 26, 35, 36

Edge in graph, 242, 265

— infinite, 254

Ehrenkrantz, Ezra, 213, 345

Eldars, M. Z., 286, 311, 314-15, 316,
330

Electrical network, 269, 271ff.

Electronic modules, packing of, 148

Ellipticity ratio, 193

Elongation ratio, 193

Enantiomorphic shapes, 186

Environmental performance
evaluation, 156, 198

Euclidean norm, 186

Euler, L., 242, 243

European Productivity Agency, 132,
213-15, 225, 345

— UK test building, 132-3, 133

Extremum points, 145

Extrusion

— blocks in, 173

— Seagram Building mullion as,
168,170

Face of graph, 2534

Facilities allocation problems, 305

Family tree, 263, 264

— matrix of, 297

Fedorov, E. S., 42

Fergusson, James, 60

Fibonacci [Leonardo of Pisa], 232

Fibonacci series, 2324, 235, 237,
240-1

— based on ¢, 232, 234, 235

Field

— associative property of], 91

— closure in, 91

— commutativity in, 91

— compositions in, 91

— distributive property of, 92

— identity element in, 91

— inverse element in, 91

— number, 91

— rules of operation in, 91-2

Fitting

— of blocks, 173

— of components, 146, 147, 149, 150

— of rooms, 279

‘Floating room’, 155

Ford, Henry, 199

Ford’s algorithm, 326-7

Forest, 293, 295

Form ratio, 192, 193

Frieze symmetry groups, 56, 624,
61,63,64

Fuller, Buckminster, 121, 336
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Garner, T. and Stratton, A., 343
Gardner, Martin, 274, 342
Garrison, William, 349
Generative layout methods, 322
Geoffroy Saint-Hilaire, Auguste de,
36,38
Geometric series
— based on ¢, 234-5
— definition of, 213
— in EPA set, 21315
— in Renaissance proportion, 225-6
Ghyka, Matila, 337
Giedion, Sigfried, 340
Glide axis, 55
Glide reflection, 48ff., 114
Goethe, J. W. von, 36, 38
Golden number ¢, 234, 235-8
Golden rectangle, 229, 231, 232
Golden section, 229
Golomb, S. W., 342
Graph[s]
— of adjacencies, 247ff., 257,
260-2, 278-9
— arcin, 2634
— classificatory, 299
— of communication, 297-8
— complete, 255
— component of, 293
— connected, 293
— contraction of, 251
— of critical path, 264
— of Devin House, 260-2, 261, 262
— digraph, 264
— directed, 264
— dual, 2534
— edgein, 242, 265
— facein, 2534
— of family tree, 263, 264
— isomorphic, 244
— of kinship, 264
— Kuratowski sub-graph, 256
— loop in, 264
— of map, 243
— of organization, 296, 297-8
— partial, 267, 268, 297
— partial sub-graph, 267, 268
— path in, 266
— plan, 253-4, 279
— planar, 243ff., 260-2
— ‘requirement’, 249, 252, 254
— of roads, 268
— sub-graph, 251, 267, 268
— theory of, 194, 242ff.
— vertex of, 242, 263
Graph-traversing methods, 326-7
Grason, John, 347-8
Grass fire, 194
Gray, James F., 344
Grid
— of Farnsworth House, 210-12
— of Jester House, 240
— modular, 128, 200, 2051F.
— multi-module, 208, 209
— rectangular, 209, 210
— tartan, 208, 209
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Group[s]

— Abelian, 45, 93, 102

— associative property of, 44
— closure in, 44

— commutativity in, 45

— composition in, 44-5

— identity element in, 44

— inverse element in, 45

— properties of, 44

— rotations forming a, 45-6
— translations forming a, 44-5
Guillotine cut, 159, 161, 173
Gwilt, Joseph, 138, 139

Haeckel, Ernst Heinrich, 37, 38
Haftmann, Werner, 31
Haggett, Peter, 191, 192, 193, 330,
338, 349
Half-hyperspaces, 176
Halflines, 145, 150
— intersection of, 145, 171
Halfplanes, intersection of, 150-1,
150, 171, 195
Halfspaces, intersection of, 195
Halfturn, 51, 52, 53
Hambidge, Jay, 231
Harary, F., Norman, R. Z. and
Cartwright, D., 347
Harding, J. W., 201
Hardy, G. H., 339
Harris, Britton, 349
Haiiy, René Just, 36, 37, 38, 122,
136, 137
Hawkes, Dean, 130, 198
Hermitian symmetry, 95
Hertfordshire schools, 204
Heuristic methods in layout, 305
Hexagon, 189-90, 191
Hilditch, Judith, 194
Holes in shapes, 187-8
Homogeneous coordinates, 115
Hooke, Robert, 32, 33, 37
Horton, R. E., 192, 193
Hospital layout, 290, 314-5, 332
House planning, 247ff., 269ff.
Houses and wells, problem of, 244,
245-6, 251
Housing
— layout, 64, 75, 111, 219
— prefabrication in, 199
Hyperblock, 176-7

Idempotent relationship of sets, 125

Identity element

—in field, 91

— in group, 44

Identity matrix, 1034, 186

Identity transformation, 19, 25

‘Important Members, The’, 2724

Improper isometries, 471f.

Improper alibi, 187

‘Improvement’ methods of layout,
303

Inequalities on arcs of network,
2824
Inner product, of vector, 90
Integers
—setof, Z, 17,123
— positive, Z, , 17, 205
Intelligence tests, 29-30
Interactive graphics, 155-6
Interior angle, 110
Interpolation
— linear, 181
Intersection
— of sets, 124, 125
— of convex sets, 197
Interval of points, 145ff.
Invariant points in symmetry, 48
Inverse element
— in field, 91
— in group, 45
Irrational number([s]
—setof, 0/, 17
— +/2 an irrational number, 227
Isometric drawing, 22
Isometric projection, 22
Isometries, 25, 114
— between similar shapes, 187
— in Le Corbusier plans, 21, 22
— of the plane, 42ff.
— in printed drawings, 20
— proper, improper, 187
— of telephone box, 120
Isomorphism, 107
— of graphs, 244, 251

Jigsaw, 273

Joedicke, Jiirgen, 155

Jones, Owen, 38, 38, 62, 86, 343
Jordan curve theorem, 245, 246

Kaleidoscopic images, 50

Kansky, K. J., 350

Kemeny, J. G., Snell, J. L. and
Thompson, G. L., 342

Kendall, M. G., 337

Keystone Cops, 79

King, Leslie J., 337

Kirchhoff’s laws, 271-2, 274, 279,
282

Klee, Paul, 31, 31-2

Konigsberg bridge problem, 242,
243

Krejcirik, M., 347

Kuhn, H. W., 324, 325

Kuratowski sub-graphs, 256

Kuratowski’s theorem, 256

Land Use and Built Form Studies,
339

Lattice

— of modular lines, 208, 208

— of modular points, 206, 207

— points, 216

Laugier, Marc-Antoine, 60
Leach, Edmund, 338
Le Corbusier, 340, 346
— and formal symmetry, 40
— Governor’s Palace at
Chandigarh, 115-16
— and Owen Jones, 38, 62
— Maison Minimum, 20, 21-3, 157,
158,159, 166-7, 166-7, 168-70,
169-71
— Modulor, 115, 116, 202, 202,
234-7, 236
— housing at Pessac, 21, 21, 22,
64, 64, 871f., 87, 951f., 111, 111
— Schelde development, Antwerp,
63
— tracé regulateur, 226
— La Ville Radieuse, 76, 77, 78, 719
Ledoux, Claude-Nicolas, 58, 59
Leonardo of Pisa [Fibonacci], 232
Leonardo da Vinci, 30, 56, 58, 226
Levin, P. H., 347
Lévi-Strauss, Claude, 8
Lift travel, 321
Light pen, 155
Linear Diophantine equations,
217-21
Linear indeterminate problems, 217
Linear interpolation, 181
Linear programming, 121, 196-7
Line-printer image of shape, 179
Lloyd, Harold, 79
‘Location’, 286ff.
— shape and size of, 330-1
London
— plans for rebuilding, 32, 33
— road system, 268
Loop in graph, 264
Loren, Sophia, 15
Lowest common multiple, 211
Lyusternik, L. A., 344

Machine intelligence, 194

Makowski, Z. S., 336

Mapping[s]

— affinity, 22, 25

— architect’s drawing as, 13, 19,
21-3

— in art, 30-2

— of built environment, 34

— clock arithmetic as, 19

— in cortex, 26, 26

— as creative act, 29-32

— Fahrenheit— Celsius, 18

— isometry, 22, 25

— of lengths, 21-2

— metric—imperial units, 14

— multi-valued, 263

— of numbers, 29-30

— percentages as, 15, 16

— perspectivity, 23, 25

— in plans for London, 32, 33

— rounding of sizes as, 18

— scale of drawing as, 14

— of sets, 263
— of shape, 178
— similarity, 22, 25
— story—storey, 13-14
— topological, 23, 25
— in Wright plans, 27, 28, 28
March, Lionel, 123, 339, 344
Marks, Robert W., 336
Markus, T. A., 192
Martin, Bruce, 206, 208, 345
— telephone box design, 118, 118,
119,120
Martin, Sir Leslie, 6, 339
Matrix[ces]
— addition of, 100-2
— algebra, rules of, 101-5
— associated with network, 327-9
— associative under addition, 102
— associative under
multiplication, 102, 103
— building, 200, 206, 207
— closure under addition, 102
— closure under multiplication, 102
— column vector of, 88
— commutative under addition, 102
— conformable for addition, 100
— conformable for multiplication,
96, 98
— conjunction, 149-50, 153
— of cubes, 137, 200
— determinant of, 104-5, 114
— diagonal, 97, 101
— distributive under
multiplication, 103
— equality of, 102
— of family tree, 297
— identity, 1034, 186
— identity of, 102
— inverse of, 102, 104
— methods for shortest path
problems, 327-9
— multiplication of, 96ff., 103
— non-singular, 104
— order of, 96, 101
— of organization, 296-7
— permutation, 117-18, 172, 185,
186, 191
— post-multiplication of, 98-9, 103
— pre-multiplication of, 97, 99, 103
— reflection, 112, 113, 186
— representation of shape, 179
— row vector of, 88
— rotation, 712, 113, 184, 185
— scalar, 98
— scalar product of, 102
— shear, 115
— skew-symmetric, 101
— square, 97, 98, 101
— for one-way stretch, 114
— triangular, 101
— for two-way stretch, 114
— of window costs, 96ff.
— of window schedule, 87fF., 95ff.
— zero-one, 112fF., 179, 182fF., 190
Medawar, P. B., 336

Medial Axis Transform, 194
Mies van der Rohe, Ludwig, 134,
340
— Farnsworth House, 210-11, 210,
211
— glass skyscraper projects, 180,
181
— Illinois Institute of Technology,
134-5,135
— Seagram Building, 136, 141,
142-3
— Seagram Building mullion, 168,
168
Mineralogy, 35, 36
Mirror(s]
— axis, 55
— in symmetry, 48ff.
Modular block, 140
Modular coordination, 122, 199ff.,
222,224
— EPA project on, 132, 213
Modular description of shape, 122,
123fT.
Modular dimensions, 201ff.
Modular grid, 128, 200, 205ff., 222,
223 :
Modular lines, 206, 206
Modular lines, lattice of, 208, 208
Modular number pattern, 213-15
Modular points, lattice of, 205, 206
Modular set, 205, 212
Modular space, 200
Module, 200ff., 222
— 4-inch (100 mm), 133, 200, 201
— planning, 133, 201, 202, 212
— structural, 201, 212
— types, choice of, 202
Modulo arithmetic, 18
— inraster, 179, 181
Modulor of Le Corbusier, 115, 116,
202, 202, 234-17, 236
de Moivre’s theorem, 113fF., 179
Molécule integrante, 36, 122, 136,
144
Monge, Gaspard, 24, 35, 36
Moran, P. A. P., 337
Morphology, 36
Morrill, Richard L., 337
Mosaic of rectangles, 269-70, 272
Multi-module, 201, 208
— grid, 208, 209
Multiple regions, 189, 192

Natural numbers, set of N, 17

Neighbourhood, circular, 164-5,
194

Neighbouring states theorem, 257

Neighbourliness, 23, 25

Nesting

— of blocks, 173

— of components, 146, 147, 149,
150

— of ¢ rectangles, 231
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Network, 268

— circulation, 323

— electrical, 269, 271fF.

— traffic, flow, 268

— of trip frequencies, 291

— problems, 330

n-gon, 182, 185-6

— area of, 187-8, 198

— centroid of, 189

— matrix description of, 182ff., 190

— perimeter of, 186

Norm

— euclidean, 188

— taxicab, 188

Normalized form of shape
description, 191

Nuffield Mathematics Project, 340

Nugent, C. E., Vollman, T. E. and
Ruml, J., 305

Null vector, 93, 95

Number line, 16-17, 145

Number theory, 217

Obstruction, of window, 24, 198

Olsson, Gunnar, 350

Operating theatre, 314-5, 314

Optimization in linear
programming, 196-7

Ordered pair, 148-9, 265

Ore, 0., 246, 346, 347

Organization[s]

— graph of, 296, 297-8

— structures of, 296, 297, 300, 332-3

Organization for European
Economic Cooperation, 132

Packing

— ofinterval with components,
215fF.

— of rectangular spaces, 148

Pair, ordered, 148

Palladio, Andrea, 224, 225

Panel[s]

— area, proportion of, 162

— circular neighbourhood of, 164

— conjunction of, 1524, 153, 160,
161

— edges of, 156-7

— equality of, 151, 152

— equivalence of, 151-2

— free, 151

— stacking, nesting, fitting of, 153,
153,154, 154, 161

— translation of, 151, 152

— vertices of, 156-7

Parallelism, 22, 25

Parallelogram of forces, 107

Parlow, Helen, 321

Partial graph, 267, 268, 297

Partial sub-graph, 267, 268

Path, in graph, 266

Pattern in mathematics, 177

Paxton, Sir Joseph, 139

358

‘Perfect squares’, 272-3

Perimeter

— of n-gon, 186

— rectangular, 186

Permutation[s]

— cyclic, 185-6, 191

— of'layout, 303-8

— matrix, 117-18, 172, 185, 186

‘Permutational’ methods of layout,
303ft., 307, 323

Perspective drawing, 24

Perspectivity, 23, 23, 25

— in shadow projection, 24

— transformation matrix for, 115

— in window obstruction, 24, 198

Pevsner, Sir Nikolaus, 340

Phi, the ‘golden number’, 229-32,
230, 234,235-8

Plan table, 287, 295, 300

Planarity of graph, 243ff., 284

Planning module, 133, 201, 202, 212

Point symmetry groups, 56-62, 57,
59

Polygon[s]

— area of, 187-8

— convex, non-convex, 191

— irregular, 178ff.

Positive definiteness, 95

Post-multiplication of matrices,
98-9

Power set, 156

Poyner, B., 337

Precision of shape description, 161

Prefabrication

— in housing, 199

— in school building, 204

— of wall panels, 217

Preferred sizes, 201

Pre-multiplication of matrices, 97,
99

Prihar, Z., 327, 329

Prime, numbers relatively, 219

Propensity for travel, 334-5

Proportion

— circular, 238-41

— of rooms, shapes, 271-2

— systems of, 222ff.

Proximity of rooms, 285

Pythagoras’ theorem, 131, 318

— for vectors, 109

Quadrat[s], 122, 123, 127

— approximation of shape, 178-9
— distance between two, 131

— intersection of, 130

— union of, 129

Rabbits, 232-3

Radial lengths in irregular shapes,
192-3

Radial-line ratio, 193

Random sampling, 305, 308

Raster, 179, 181

Rational numbers, set of Q, 17
Real distance, 318-20
Real number system, 16, 145, 150,
205
Rectangular distance, 131, 186,
318-20
Rectangular grid, 209
Rectangular perimeter, 186
Red series of Modulor, 234-7
Reflection[s]
— dihedral, 50
— in geometrical art, 40
— glide, 48fT., 114
— of house plans, 252
— in Le Corbusier plans, 21
— matrix, 7112, 113, 186
— properties of, 47ff.
— of rectangular space, 132
— of shape, 186
Regular figures, 121
Regulating lines, 226
Relation[s]
— reflexive, 264
— in sets, in graphs, 263, 264-5
— symmetric, 265
Relatively prime numbers, 219
Renaissance proportion, 224, 225,
227
Research institute, plan of, 287fF.,
304fF.
Resolution of approximation, 178,
179, 189
Robertson, R. G., 336
Rogers, M. H., 306
Room([s]
— adjacencies of, 247ff.
— arrangement, 158, 159
— arrangement in Maison
— Minimum, 166-7, 166-7
constraints on size, proportion
of, 162, 163
— ‘floating’, 155
— linkage, 27, 28, 249
— planning in bands, 154-6, 154—6
Root two proportion, rectangle,
227-9
Rotations
— centre of, 45
— forming a group, 45-6
— in geometrical art, 40
— in Le Corbusier plans, 22
— matrix, 112, 113, 184, 185
— properties of, 46ff.
— of shape or axes, 178
— of vector base, 184
Rounding, of component sizes,
numbers, 18
Row vector, 88
Ruskin, John, 38, 39
— his handkerchief, 39, 39, 40

Scalar exponent rule, 107
Scalar matrix, 98

Scalar multiplication
— of matrices, 102
— of sets, 204
— of vectors, 89-90
Scalar product
— of matrices, 102
— of vectors, 89-90, 94, 106, 107
Scanning of shape, 179
Schlifii symbol, 80
Scholfield, P. H., 222, 227, 231, 346
School Mathematics Project, 340-1
Sciagraphy, 24, 198
Seehof, J. M. et al., 308
Series
— Blue, Red, of Modulor, 234-7
— doubling and tripling, 214-5
— geometric, 213-15
Set[s]
— algebra of, 125, 126
— anti-symmetric law, 125
— associative properties of, 125
— Bemis, 201, 204
— cartesian product of, 149, 150,
156, 205-8
— commutative properties of, 124,
125
— complement of, 125, 130
— complementarity of, 126
— consistency in set operations, 126
— convex, 171, 194, 197
— ‘Corbusier’, 235
— definition of, 15
— elements of, 15, 263
— ‘European’, 215
— idempotent relationship of, 125,
126
— identity of, 126
— inclusion of|, 125,299
— intersection of, 124, 125, 170
— involution in, 126
— ‘Jester’, 241
— Modular, 205, 212
— of modular sizes, 204, 212
— null, empty, 125, 126, 263
— orderin, 15
— of points, 145ff., 164
— power, 156
— product, 148-9, 156
— reflective law for, 125
— scalar multiplication of, 204
— sub-set[s], 125, 156, 263
— theory, 123ff., 263
— transitive properties of, 125
— union of], 124, 125
— unit, 299
— universal bounds of, 125
— universe of discourse of, 125, 299
Shadow projection, 24, 198
Shape[s]
— description of, 121ff.
— description in geography, 191-3
— with holes, 187-8, 192
— irregular, 178fF.
— of rectangular components,
rooms, 222ff., 223

— skeleton, 194

— in urban studies, 191

‘Shapeiness’, 122-3, 191-2

Shoes and socks, 43, 49, 148

Shortest paths, 324, 3267

— graph-traversing methods for,
326-7

— matrix methods for, 327-9

— table of, 328-9

Similarity, 24

— architect’s drawing as, 22, 25

— general similarity of shapes, 187

— representation of shape, 178

— slide projection as, 24

Skeleton of shape, 194

Skew-symmetric matrix, 101

Soane, Sir John, 58, 59

Solution set

— in linear programming, 197

— for room sizes, 162, 163

Souder, J. J. et al., 321, 349

Space-filling solids, 121

Spatial framework, 310-11, 314

‘Squaring the square’, 2724

Stacking

— of blocks, 173

— of components, 146, 147, 149,
150

— of ¢ rectangles, 231

Standardization in building,
199-201

Steadman, Philip, 154, 155, 274, 348

Stibbs, Richard, 130, 154, 155, 198

Stone, A. H., 274

Stone, Richard, 338

Stretch, one-way, two-way, 112,
114

String model of network, 325

Structural module, 201, 212

Sub-graph, 251, 267

— Kuratowski, 256

— partial, 267

Sub-set, 125, 156, 263, 267

‘Subtracted areas’, method of, 130

‘Subtracted volumes’, method of,
141

Sunlight, 24, 198

Sullivan, Louis, 38

Symmetric matrix, 101

Symmetry[ies]

— abstract definition of symmetry
group, 51

— Beaxu Arts, 35

— in botany, zoology, 36-7

— considerations in layout, 304

— in crystallography, 36-7, 40

— Egyptian knowledge of, 42

— formal symmetry in modern
architecture, 40, 41

— frieze symmetry groups, 56,
62-4, 61,63, 64

— group, 42ff.

— improper, opposite, 47fF.

— kaleidoscopic, 50

— operations, 42ff.

— operations on rooms, 53

— in ornament, 38-40

— point symmetry groups, 56—62,
57,59

— proper, 42fF.

— reflected, mirror, 47ff.

— by rotation, 45ff.

— by translation, 42ff.

— in La Ville Radieuse, 76-9, 77, 78

— Viollet-le-Duc on, 35, 257

— wallpaper symmetry groups, 56,
64fT., 66-78

— in Wright tower plans, 791ff.

Tabor, Philip, 303, 319, 321, 333,
334, 348

— his experiments, 319-20, 322-3,
334-5

Tartan grid, 208, 209

Tatami, 202

Taxicab norm, 188

Taxonomy, 331

Telephone boxes, 118, 118, 119, 120

Terminal vertex, 324

Tartan grid, 208, 209

Thompson, W. D’Arcy, 336

Tiling by squares, 274

Tolerance zone, 165, 167

Topological mapping, 23, 25

— in cortex, 26, 26

Téth, Fejes, 56, 65, 343

Trace, Michael, 123, 344

Tracé regulateur, 226

Transformation(s]

— affine, 112, 112,113

— alias, 108, 182

— alibi, 186

— in architects’ drawings, 19, 214,
25

— enlargement, dilation, /12, 114,
115,116,117

— isometries of plane, 42ff., 112

— isomorphism of transformation
with vector, 107

— in light projection, 24, 198

— scalar exponent rule for, 107

— one-way stretch, 7112, 114

— two-way stretch, 7112, 114

Translation[s]

— alibi, 108

— associative property of, 44

— of axes, 108

— between similar shapes, 187

— of block, 172

— commutativity of, 45

— forming a group, 44-5

— in geometrical art, 40

— inverse of, 44

— in Le Corbusier plans, 21, 111

— operations involving, 42ff.

— of panel, 151

— product of, 43

— of rectangular space, 132
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— of shape or axes, 178

— of vector base, 184

Transpose of vector, 91

Tree, 293

— circulation system as, 288, 324

— of layout permutations, 306, 307,
310

Triangular matrix, 101

Trinity College Mathematical
Society, 273

Trip frequency [ies]

— assumptions about, 332

— network of, 291, 295

— survey of, 289

— table of, 291

— weighting of, 290, 291

Tutte, W. T., 274, 348

Type-forms, 319-20, 319, 322, 334

Ulm School of Design,-324, 325
Union, of sets, 124, 125, 206fT.
Union Jack, 13

Units of length along line, 123ff.
Universe of discourse, 125
“Utilities’ problem, 244, 245-6, 251

Vector[s]

— an Abelian group under
addition, 93

— addition of, 89, 92, 107

— algebra, rules of, 91-5

— angle between two, 109-10

— associative under addition, 93

— associative under multiplication,
94,95

— base vector, 108, 182

— base, 184, 186

— chain of, 183

— closure under addition, 92

— closure under multiplication, 94

— column, 88, 101

— cone, 157,175
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— commutative under addition, 93

— components of, 90

— dimension of, 90

— direction of, 105

— distributive properties of, 92, 94,
95

— equality of, 92

— geometrical interpretation of,
105fT.

— hermitian symmetry, 95

— identity of, 93

— inner product of, 90, 94, 108, 189

— inverse of, 93

— isomorphism with translation,
107

— length of, 105, 106

— multiplication, 90

—null, 93,95

— position, 106, 107, 108, 110, 111,
182

— positive definiteness, 95

— row, 88, 101

— scalar product of, 89-90, 94,
106, 107, 108

— transpose of, 91, 94

— unit, 108, 109, 186

Venn diagram, 300

Vertex[ices]

— of graph, 242, 263

— initial, terminal, 264, 324

— of network, 270ff.

— to represent walls, 270ff., 280ff.

Viollet-le-Duc, E.-E.

— on cubic modules, 137

— on house-planning, 257, 260

— on symmetry, 35, 37, 39

Voltages in wires, 271, 272

Volume ratio, 192

Wachsmann, Konrad, 202

Walking speed, 321

Wallpaper symmetry groups, 56,
64fF., 66-78

Watson, James, 29

Webber, Melvin, 337

Weiss, Christian Samuel, 36, 37, 38

Weyl, Hermann, 42, 56, 343

‘Whirling squares’, 231

Whitehead, B., 286, 311, 314-15,
316, 330

Window schedule, 87, 95

Wittkower, Rudolf, 224, 346

Wolfflin, Heinrich, 226

Wren, Sir Christopher, 32, 33

Wright, Frank Lloyd, 340

— on Beethoven’s Fifth, 62

— Chicago apartments, 83, 84, 85

— Chicago quarter-section
competition, 65, 75, 75

— Crystal Heights Hotel, 79, 80-1,
84,85

— on decoration, 62

— Aline Devin House, 257, 258, 259

— dihedral symmetry of plans, 59,
60, 62

— and formal symmetry, 40

— Jester House, 27, 81, 238—41, 239

— Lloyd Jones House, 138, 138

— and Owen Jones, 38

— Life Magazine House, 27, 81

— Martin House, 4/ '

— McCormick House, 115, 116

— Millard House, 63, 63, 75, 76,
137-8

— Price Tower, 80, 83, 84, 85

— St. Mark’s-in-the-Bouwerie,
79-83, 82, 83,84, 85

— Sundt House, 27, 28, 80

— topology of plans, 27, 28, 28, 37

Yaglom, I. M. and Boltyanski,
V.G., 344

Zero-one matrix, 113



